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Part 1
Approval Voting



Tapez une équation ici.

The social choice pipeline

Social choice 
function

Preference 
profile

Winner(s)

{𝑎}

𝑎 ≻ 𝑏 ≻ 𝑐

𝑎 ≻ 𝑐 ≻ 𝑏

𝑏 ≻ 𝑐 ≻ 𝑎

𝑐 ≻ 𝑎 ≻ 𝑏

3 ×

1 ×

1 ×

2 ×
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Tapez une équation ici.

The social choice pipeline

Social choice 
function

Approval 
profile

Winner(s)

{𝑎}

{𝑎, 𝑏}

{𝑎, 𝑐}

{𝑏}

{𝑐}

3 ×

1 ×

1 ×

2 ×
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Examples of use cases

Selecting a date Elections 
(St. Louis, Fargo, …)
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Formal model of approval preferences
Fix a finite set 𝐴 = {𝑎, 𝑏, 𝑐, … } of alternatives with 𝐴 = 𝑚 ≥ 2.

An approval ballot is a subset of the preferences 𝐵 ⊆ 𝐴. We denote by 2𝐴 the 
set of all possible approval ballots.

Each voter of the finite set 𝑁 = 1,… , 𝑛 supplies an approval ballot 𝐵𝑖, giving 
rise to an approval profile 𝑃 = 𝐵1, … , 𝐵𝑛 ∈ 2𝐴 𝑛.

An approval-based voting rule for 𝐴 and 𝑁 selects one or (in case of ties) 
more winners for every such profile:

𝐹 ∶ 2𝐴 𝑛 → 2𝐴 ∖ {∅}
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The approval voting rule

We define the approval score of an alternative 𝑥 in a profile 𝑃 as:

The approval rule selects the alternatives with the highest approval score:

Discussion: can you think of any other sensible approval-based voting rule?

𝑆𝑃 𝑥 = 𝑖 ∈ 𝑁 ∶ 𝑥 ∈ 𝐵𝑖

AV 𝑃 = argmax𝑥∈𝐴𝑆𝑃(𝑥)
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Properties of approval voting

Anonymity: 𝐹 𝐵1, … , 𝐵𝑛 = 𝐹 𝐵𝜋 1 , … , 𝐵𝜋 𝑛 for any profile 𝑃 = 𝐵1, … , 𝐵𝑛
and permutation 𝜋 ∶ 𝑁 → 𝑁.
« All voters should be treated symmetrically »

Neutrality: 𝐹 𝜋 𝑃 = 𝜋 𝐹 𝑃 for any profile 𝑃 and permutation 𝜋 ∶ 𝐴 → 𝐴.
« All alternatives should be treated symmetrically »

Reinforcement:1 For two profiles 𝑃 on voter set 𝑁 and 𝑃’ on voter set 𝑁’ and 
with the same alternative set 𝐴, we have 𝐹 𝑃 + 𝑃′ = 𝐹 𝑃 ∩ 𝐹 𝑃′ whenever 
𝐹 𝑃 ∩ 𝐹 𝑃′ ≠ ∅ where 𝑃 + 𝑃′ is the concatenation of the two profiles.
« If an alternative wins in two voting stations, it should still win if we merge them »

1 Sometimes called Consistency. Théo Delemazure 9



Arrovian properties

Let us now consider a resolute refinement of approval voting, for instance by 
breaking ties lexicographically.

Arrow’s Theorem: « Any resolute SCF for 𝑚 ≥ 3 alternatives that is Paretian
and independent must be a dictatorship. »

Arrow’s impossibility theorem do not apply to approval voting.
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Arrovian properties
Pareto: for a profile 𝑃 and alternatives 𝑥, 𝑦 ∈ 𝐴, if 

(1) for every voter 𝑖 ∈ 𝑁 we have 𝑥 ∈ 𝐵𝑖 ⇒ 𝑦 ∈ 𝐵𝑖 and 
(2) there is at least one voter 𝑗 ∈ 𝑁 such that 𝑦 ∈ 𝐵𝑗 and 𝑥 ∉ 𝐵𝑗
then 𝐹 𝑃 ≠ 𝑥.

« If every voter who approves 𝑥 also approves y and at least one voter approves 𝑦 and not 𝑥, 
then 𝑥 should not be selected » 

Independence: for two profiles 𝑃 = (𝐵1, … , 𝐵𝑛) et 𝑃’ = (𝐵1′, … , 𝐵𝑛′) and two 
alternatives 𝑥, 𝑦 ∈ 𝐴, if for all 𝑖 ∈ 𝑁, 𝐵𝑖 ∩ 𝑥, 𝑦 = 𝐵𝑖′ ∩ {𝑥, 𝑦} then 
𝐹 𝑃 = 𝑥 ⇒ 𝐹 𝑃’ ≠ 𝑦.
« Whether 𝑥 is socially preferred to 𝑦 should depend only on whether 𝑥 and 𝑦 are approved in 
the profile (not on other, irrelevant, alternatives) » 

Exercise: prove that approval voting satisfies these two properties.
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Strategyproofness of approval voting

F is strategy-proof if for no voter 𝑖 ∈ 𝑁 there exists a profile 𝑃 (including 𝑖’s 
truthful approval preference 𝐵𝑖) and an untruthful ballot 𝐵𝑖’ for 𝑖 such that 
𝐹 𝑃−𝑖 , 𝐵𝑖 ’ ∈ 𝐵𝑖 and 𝐹 𝑃 ∉ 𝐵𝑖. 2

Exercise: Prove that approval voting is strategy-proof.

Remark: Gibbard-Satterthwaite Theorem does not apply to approval voting.

2 Notation: (𝑃−𝑖 , 𝐵𝑖 ’) is the profile obtained by replacing 𝐵𝑖 by 𝐵𝑖 ’ in 𝑃.
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Part 2
Committee voting



Multi-winner (or committee) voting

Social choice 
function

Approval 
profile

Committee(s)

{{𝑏, 𝑐}}

{𝑎, 𝑏}

{𝑎, 𝑐}

{𝑏}

{𝑐}

3 ×

1 ×

1 ×

2 ×
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Examples of use cases

Participatory 
Budgeting (PB)

Elections 
(Society for Social 

Choice and Welfare)
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Formal model of committee voting

We set a desired committee size 𝑘 ∈ ℕ. A committee is a subset of 𝐴 of 
size 𝑘. We denote 𝐴

𝑘
the set of all committees of size 𝑘.

An approval-based committee rule (ABC rule) for 𝐴, 𝑁 and 𝑘 selects one 
or (in case of ties) more committees for every profile:

Discussion: can you think of any sensible ABC rule?

𝐹 ∶ 2𝐴 𝑛 → 2
𝐴
𝑘 ∖ {∅}
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Multi-winner approval voting

The simple multi-winner approval voting rule (MAV) selects the 𝑘
alternatives with the highest score.

What happens in the following profile, with 𝒌 = 𝟑?

{𝑎, 𝑏, 𝑐} {𝑑, 𝑒, 𝑓}51 × 49 ×

MAV𝑘 𝑃 = argmax𝑊⊆𝐴, 𝑊 =𝑘 ෍

𝑥∈𝑊

𝑆𝑝 𝑥
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Three main goals of committee voting

Excellence ??? ???

We want the alternatives 
that are individually the 

best.

Use case: shortlisting, 
awards…

Rule: MAV

Théo Delemazure 18



Three main goals of committee voting

Excellence Proportionality Diversity

We want the alternatives 
that are individually the 

best.

Use case: shortlisting, 
awards…

Rule: MAV

We want to select 
alternatives such that 

each group is represented 
in proportion to its size.

Use case: assembly, 
participatory budgeting…

Rule: ??

We want that as many 
voters as possible are 

represented by at least 
one alternative.

Use case: facility 
location…

Rule: ??
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Chamberlain-Courant approval voting

The Chamberlain-Courant approval voting rule (CCAV) selects the 𝑘
alternatives that cover the highest number of voters.

What alternatives are selected by MAV and CCAV in this profile, with 𝒌 = 𝟐?

{𝑎}2 × {𝑎, 𝑏}6 × {𝑎, 𝑏, 𝑐}4 × {𝑐, 𝑑}4 × {𝑑}1 ×

CCAV𝑘 𝑃 = argmax𝑊⊆𝐴, 𝑊 =𝑘 {𝑖 ∈ 𝑁 ∶ 𝑊 ∩ 𝐵𝑖 ≠ ∅ |
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Chamberlain-Courant approval voting

The Chamberlain-Courant approval voting rule (CCAV) selects the 𝑘
alternatives that cover the highest number of voters.

What alternatives are selected by MAV and CCAV in this profile, with 𝒌 = 𝟐?

{𝑎}2 × {𝑎, 𝑏}6 × {𝑎, 𝑏, 𝑐}4 × {𝑐, 𝑑}4 × {𝑑}1 ×

CCAV𝑘 𝑃 = argmax𝑊⊆𝐴, 𝑊 =𝑘 {𝑖 ∈ 𝑁 ∶ 𝑊 ∩ 𝐵𝑖 ≠ ∅ |

Théo Delemazure 21



Proportional approval voting [Thiele, 1895]

Given a ballot 𝐵𝑖, the PAV score of a committee 𝑊 of size 𝑘 is equal to the 
sum of the 𝐵𝑖 ∩ 𝑊 first terms of the harmonic sequence 𝐻 = (1,

1

2
,
1

3
, … )

The proportional approval voting (PAV) rule selects the committees 
maximizing the sum of the scores over all voters:

PAV𝑘 𝑃 = argmax𝑊⊆𝐴, 𝑊 =𝑘෍

𝑖∈𝑉

𝑠𝑃𝐴𝑉 (𝑊, 𝐵𝑖)

𝑠𝑃𝐴𝑉 𝑊,𝐵𝑖 = ෍

𝑗=1

𝐵𝑖∩𝑊
1

𝑗
= 1 +⋯+

1

|𝐵𝑖 ∩𝑊|
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Proportional approval voting

What alternatives are selected by PAV in this profile, with 𝒌 = 𝟐?

{𝑎}2 × {𝑎, 𝑏}6 × {𝑎, 𝑏, 𝑐}4 × {𝑐, 𝑑}4 × {𝑑}1 ×
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Proportional approval voting

What alternatives are selected by PAV in this profile, with 𝒌 = 𝟐?

{𝑎}2 × {𝑎, 𝑏}6 × {𝑎, 𝑏, 𝑐}4 × {𝑐, 𝑑}4 × {𝑑}1 ×

{𝑎}2 × {𝑎, 𝑏}6 × {𝑎, 𝑏, 𝑐}4 × {𝑐, 𝑑}4 × {𝑑}1 ×

{𝑎}2 × {𝑎, 𝑏}6 × {𝑎, 𝑏, 𝑐}4 × {𝑐, 𝑑}4 × {𝑑}1 ×

1 1 + 1/2 1 + 1/2

1

1

1

1

1 + 1/2

1

1

1 1
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Thiele rules
Given a ballot 𝐵𝑖, the 𝒘-Thiele score of a committee 𝑊 of size 𝑘 is equal to 
the sum of the 𝐵𝑖 ∩ 𝑊 first terms of the sequence 𝑤 = (𝑤1, 𝑤2, 𝑤3, … )

The 𝒘-Thiele rule selects the committees maximizing the sum of the scores 
over all voters:

Exercise: what is the vector 𝑤 for MAV, CCAV and PAV?

𝑤−Thiele𝑘 𝑃 = argmax𝑊⊆𝐴, 𝑊 =𝑘෍

𝑖∈𝑉

𝑠𝑤 (𝑊, 𝐵𝑖)

𝑠𝑤 𝑊,𝐵𝑖 = ෍

𝑗=1

𝐵𝑖∩𝑊

𝑤𝑗
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Axiom: Committee monotonicity

We assume for now that the rule is resolute (assume fixed tie-breaking).

An ABC rule is committee monotonic if for a same profile 𝑃 and some 𝑘 ∈ ℕ, 
the committee selected with parameter 𝑘 is a subset of the committee 
selected with parameter 𝑘 + 1:

Exercise: show that MAV is committee monotonic.

Exercise: show that CCAV and PAV are not committee monotonic.

𝐹𝑘 𝑃 ⊆ 𝐹𝑘+1 𝑃
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Sequential Thiele rules

Instead of maximizing the score of the committee as a whole, we will add 
alternatives to the committees one by one.

The sequential 𝒘-Thiele rule constructs the committee as follow:

• Start with the empty committee 𝑾𝟎 = ∅.
• For 𝑘 ≥ 0, the next alternative added to the committee is the one 

maximizing the contribution margin 𝑾𝒌+𝟏 = 𝑾𝒌 ∪ {𝒙} with:

𝑥 = argmax𝑦∈𝐴∖𝑊𝑘
෍

𝑖∈𝑉

(𝑠𝑤 𝑊𝑘 ∪ {𝑦}, 𝐵𝑖 − 𝑠𝑤(𝑊𝑘 , 𝐵𝑖))
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Sequential Thiele rules

By construction, sequential Thiele rules satisfy committee monotonicity.

Moreover, it is possible to compute the results of a sequential Thiele rule in 
polynomial time, while Thiele rules (except MAV) are NP-hard to compute.
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Three main goals of committee voting

Excellence Proportionality Diversity

We want the alternatives 
that are individually the 

best.

Use case: shortlisting, 
awards…

Rule: MAV

We want to select 
alternatives such that 

each group is represented 
in proportion to its size.

Use case: assembly, 
participatory budgeting…

Rule: PAV, Seq-PAV, 
Phragmèn, Method of 

Equal Shares…

We want that as many 
voter as possible is 

represented by at least 
one alternative.

Use case: facility 
location…

Rule: CCAV, Seq-CCAV
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Measuring proportionality: apportionment

Informally, an outcome is proportional if groups of voters are represented in the 
committee proportionally to their size.

Consider first the case where voters approve all candidates of (only) one party.

This corresponds to the apportionment model.

Example: for the preferences below and a committee size  𝑘 = 4, what should be 
the committee?

{𝑎1, 𝑎2, 𝑎3, … }25 × {𝑏1, 𝑏2, 𝑏3, … }25 × {𝑐1, 𝑐2, 𝑐3, … }50 ×
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Informally, an outcome is proportional if groups of voters are represented in the 
committee proportionally to their size.

Consider first the case where voters approve all candidates of one party.

This corresponds to the apportionment model.

In this model, an outcome is proportional if a party supported by 𝑥 voters receives 
at least 𝒙

𝒏
⋅ 𝒌 seats in the committee.

Question: how to generalize this principle outside of the apportionment model?

Théo Delemazure 31
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Axiom: Justified Representation

An outcome satisfies the minimal proportionality requirement if there is 
no cohesive group of voters of size 𝑛/𝑘 such that all voters are 
unhappy with the committee.
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Axiom: Justified Representation

An outcome satisfies the minimal proportionality requirement if there is 
no cohesive group of voters of size 𝑛/𝑘 such that all voters are 
unhappy with the committee.

A group of voters 𝑆 ⊆ 𝑁 is said to be 1-cohesive if ∩𝑖∈𝑆 𝐵𝑖 ≥ 1.

A committee 𝑊 satisfies Justified Representation (JR) if for each 
group 𝑆 ⊆ 𝑁 that is 1-cohesive and such that 𝑆 ≥ 𝑛/𝑘, it holds that:

In other words, at least one voter in 𝑆 approve an alternative in 𝑊.

𝑊 ∩ራ

𝑖∈𝑆

𝐵𝑖 ≥ 1
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Axiom: Justified Representation

Example: we want a committee of size 𝑘 = 4.

{𝑎, 𝑏, 𝑐}3 × {𝑏}3 × {𝑒, 𝑓}3 × {𝑥, 𝑦, 𝑧}2 × {𝑥, 𝑦}1 ×
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Axiom: Justified Representation

Example: we want a committee of size 𝑘 = 4.

{𝑎, 𝑏, 𝑐}3 × {𝑏}3 × {𝑒, 𝑓}3 × {𝑥, 𝑦, 𝑧}2 × {𝑥, 𝑦}1 ×
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Axiom: Justified Representation

Example: we want a committee of size 𝑘 = 4.

{𝑎, 𝑏, 𝑐}3 × {𝑏}3 × {𝑒, 𝑓}3 × {𝑥, 𝑦, 𝑧}2 × {𝑥, 𝑦}1 ×

• The committee should contain 𝑎, 𝑏, or 𝑐.
• The committee should contain 𝑏.
• The committee should contain 𝑒 or 𝑓.
• The committee should contain 𝑥, 𝑦, or 𝑧.
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Axiom: Justified Representation

Example: we want a committee of size 𝑘 = 4.

{𝑎, 𝑏, 𝑐}3 × {𝑏}3 × {𝑒, 𝑓}3 × {𝑥, 𝑦, 𝑧}2 × {𝑥, 𝑦}1 ×

• (The committee should contain 𝑎, 𝑏, or 𝑐.)
• The committee should contain 𝑏.
• The committee should contain 𝑒 or 𝑓.
• The committee should contain 𝑥, 𝑦, or 𝑧.
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Axiom: Justified Representation

An ABC rule satisfies the Justified Representation axiom if for every 
profile 𝑃, the committee it returns 𝑓(𝑃) satisfies Justified Representation.

Exercise: show that MAV fails JR.

Exercise: show that CCAV satisfies JR.
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Extended Justified Representation

A group of voters 𝑆 ⊆ 𝑁 is said to be ℓ-cohesive if ∩𝑖∈𝑆 𝐵𝑖 ≥ ℓ.

A committee 𝑊 satisfies Extended Justified Representation (EJR) if 
for each group 𝑆 ⊆ 𝑁 that is ℓ-cohesive and such that 𝑆 ≥ ℓ ⋅ 𝑛/𝑘, it 
holds that:

Theorem [Aziz et al., 2017]: PAV satisfies EJR and CCAV fails EJR.

𝑊 ∩ 𝐵𝑖 ≥ ℓ for some voter 𝑖 ∈ 𝑆.
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The core

We say that a committee W is in the core if for each non-empty 𝑁 ⊆ 𝑉
and each T ⊆ 𝐴 with 

Théo Delemazure 40

𝑇

𝑘
≤

𝑁

𝑛

there exists a voter 𝑖 ∈ 𝑁 such that |𝐵𝑖 ∩ 𝑇| ≤ |𝐵𝑖 ∩ 𝑊|, i.e., voter 𝑖 is 
at least as satisfied with 𝑊 as with 𝑇.

Question: is there always a committee in the core?



Other topics: variable size committee

Use case: shortlisting

Théo Delemazure 41

We now assume that we can select any committee.

Question: what rule can we build specifically for this case?



Other topics: participatory budgeting

Théo Delemazure 42

Each alternative is associated to a cost 𝑐𝑜𝑠𝑡 𝑥 ≥ 0. The selected 
committee can be of any size but the total cost of the alternatives 
should not be higher than 𝐵.

Method of equal shares https://equalshares.net/explanation#example

https://equalshares.net/explanation#example


Recommended books
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The social choice pipeline

Social choice 
function

Rankings 
Approval Ballots

Ratings
…

Winner(s)
Committee(s)
Assembly
Structure
…
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