

# Approval-Compatible Voting Rules

## Positive Compatibility for Scoring Rules

Based on Terzopoulou–Lang–Zwicker

# Definitions

- Set of alternatives:  $X$ ,  $|X| = m \geq 3$ .
- Voters:  $N = \{1, \dots, n\}$ .
- Approval ballot:  $A_i \subseteq X$ , approval profile:  $\mathbf{A} = \langle A_1, \dots, A_m \rangle$
- Approval winners:  $\text{App}(\mathbf{A})$
- rankings are strict total orders:  $V_i = x_1 x_2 \dots x_m$ , ranking profile:  $\mathbf{V} = \langle V_1, \dots, V_n \rangle$

# Ranking Ballots and Compatibility

## Compatibility

A ranking profile  $\mathbf{V}$  is compatible with approval profile  $\mathbf{A}$ , writing  $\mathbf{V} \sim \mathbf{A}$ , if

$$\forall A_i \in \mathbf{A}, \forall x, y \in X, (x \in A_i \wedge y \notin A_i) \implies x \succ_i y$$

# Ranking Ballots and Compatibility

## Compatibility

A ranking profile  $\mathbf{V}$  is compatible with approval profile  $\mathbf{A}$ , writing  $\mathbf{V} \sim \mathbf{A}$ , if

$$\forall A_i \in \mathbf{A}, \forall x, y \in X, (x \in A_i \wedge y \notin A_i) \implies x \succ_i y$$

## Standardised ranking

Let  $\mathbf{A}$  be an approval profile and let  $x \in \text{App}(\mathbf{A})$ . A ranking profile  $\mathbf{V} \sim \mathbf{A}$  is a standardized ranking profile for  $x$  under  $\mathbf{A}$  if

- 1  $x \in A_i \implies x$  is ranked first in  $V_i$
- 2  $x \notin A_i \implies x$  is ranked highest amongst nonapproved alternatives

## Positive Approval Compatibility (PAC)

A voting rule  $r$  satisfies *PAC* if for every approval profile  $\mathbf{A}$  and every  $a \in \text{App}(\mathbf{A})$ , there exists a compatible ranking profile  $\mathbf{V} \sim \mathbf{A}$  such that  $a \in r(\mathbf{V})$

# Formal Approval Compatibility Notions

## Positive Approval Compatibility (PAC)

A voting rule  $r$  satisfies *PAC* if for every approval profile  $\mathbf{A}$  and every  $a \in \text{App}(\mathbf{A})$ , there exists a compatible ranking profile  $\mathbf{V} \sim \mathbf{A}$  such that  $a \in r(\mathbf{V})$

## Obvious Positive Approval Compatibility (OPAC)

$r$  satisfies *OPAC* if for every approval profile  $\mathbf{A}$ , every  $a \in \text{App}(\mathbf{A})$ , and every standardised profile  $\mathbf{V}$  for  $a$  compatible with  $\mathbf{A}$ ,  $a \in r(\mathbf{V})$ .

# Formal Approval Compatibility Notions

## Positive Approval Compatibility (PAC)

A voting rule  $r$  satisfies *PAC* if for every approval profile  $\mathbf{A}$  and every  $a \in \text{App}(\mathbf{A})$ , there exists a compatible ranking profile  $\mathbf{V} \sim \mathbf{A}$  such that  $a \in r(\mathbf{V})$

## Obvious Positive Approval Compatibility (OPAC)

$r$  satisfies *OPAC* if for every approval profile  $\mathbf{A}$ , every  $a \in \text{App}(\mathbf{A})$ , and every standardised profile  $\mathbf{V}$  for  $a$  compatible with  $\mathbf{A}$ ,  $a \in r(\mathbf{V})$ .

## Fractional Positive Approval Compatibility (FPAC)

$r$  satisfies *FPAC* if for every approval profile  $\mathbf{A}$  and approval winner  $a$ , there exists  $k \geq 1$  and a compatible ranking profile  $\mathbf{V} \sim k\mathbf{A}$  such that  $a \in r(\mathbf{V})$ .

## Uniform Positive Approval Compatibility (UPAC)

$r$  satisfies UPAC if for every approval profile  $\mathbf{A}$ , there exists a compatible ranking profile  $\mathbf{V} \sim \mathbf{A}$  such that  $\text{App}(\mathbf{A}) \subseteq r(\mathbf{V})$ .

# Positive Approval

## Uniform Positive Approval Compatibility (UPAC)

$r$  satisfies *UPAC* if for every approval profile  $\mathbf{A}$ , there exists a compatible ranking profile  $\mathbf{V} \sim \mathbf{A}$  such that  $\text{App}(\mathbf{A}) \subseteq r(\mathbf{V})$ .

## Fractional Uniform Positive Approval Compatibility (FUPAC)

$r$  satisfies *FUPAC* if for every approval profile  $\mathbf{A}$ , there exists  $k \geq 1$  and a compatible ranking profile  $\mathbf{V} \sim k\mathbf{A}$  such that  $\text{App}(\mathbf{A}) \subseteq r(\mathbf{V})$ .

# Theorem 1: Uniqueness of Plurality

## Theorem 1

Plurality is the only positional scoring rule that satisfies OPAC.

## Proof.

### Case 1. Plurality.

- Consider an approval winner  $x$ .
- In a standardised profile:
  - Every voter approving  $x$  ranks it first.
  - No alternative can get more first-place votes.
- Hence  $x$  is a plurality winner.



# Proof of theorem 1

Reminder:

## Standardised ranking

Let  $\mathbf{A}$  be an approval profile and let  $x \in \text{App}(\mathbf{A})$ . A ranking profile  $\mathbf{V} \sim \mathbf{A}$  is a standardized ranking profile for  $x$  under  $\mathbf{A}$  if

- ①  $x \in A_i \implies x$  is ranked first in  $V_i$
- ②  $x \notin A_i \implies x$  is ranked highest amongst nonapproved alternatives

## Proof.

**Case 2.** Different scoring rule  $r$ .

# Proof of theorem 1

Reminder:

## Standardised ranking

Let  $\mathbf{A}$  be an approval profile and let  $x \in \text{App}(\mathbf{A})$ . A ranking profile  $\mathbf{V} \sim \mathbf{A}$  is a standardized ranking profile for  $x$  under  $\mathbf{A}$  if

- ①  $x \in A_i \implies x$  is ranked first in  $V_i$
- ②  $x \notin A_i \implies x$  is ranked highest amongst nonapproved alternatives

## Proof.

### Case 2. Different scoring rule $r$ .

- Consider approval profile  $\mathbf{A} = \langle \{x_1\}, \{x_2, \dots, x_m\} \rangle$
- $x_1$  is an approval winner.
- Consider the standardised profile for  $x_1 : \mathbf{V} = \langle x_1 x_2 \dots x_m, x_2 x_3 \dots x_m x_1 \rangle$
- $x_1$  does not win under  $\mathbf{V}$ , so  $r$  does not satisfy OPAC.



## Proposition 2: Failure of $K$ -Approval

### Lemma 2

Let  $r_s$  be the positional scoring rule with scoring vector  $s = (s_1, \dots, s_m)$ . Then if  $r_s$  is FPAC, the following holds  $\forall l \in \{2, \dots, m-1\}$

$$\frac{1}{m}(s_1 + \dots + s_m) \leq \frac{ls_1 + (m-1)s_{l+1}}{l+m-1}$$

# Proof of lemma 2

## Proof.

- Suppose for contradiction it does not hold for some  $l \in \{2, \dots, m-1\}$
- consider the profile  $\mathbf{A}$  with  $l+m-1$  voters, where the first  $l$  all only approve of  $x_m$ , and the remaining  $m-1$  circularly approve of the alternatives in  $X \setminus \{x_m\}$
- Then all alternatives are approval winners
- Note that for every  $\mathbf{V} \sim k\mathbf{A}$ , the maximum score for  $x_m$  is  $k(l s_1 + (m-1) s_{l+1})$ , and the sum of all scores is  $k(l+m-1)(s_1 + \dots + s_m)$
- Thus, since our inequality is violated,  $x_m$  receives a lower score than the average score, and thus will not be selected.



## Lemma 3: FUPAC condition

### Lemma 3 (Statement)

A positional scoring rule satisfying FUPAC must satisfy

$$\frac{s_1 + s_m}{2} = \frac{s_2 + \cdots + s_{m-1}}{m-2}$$

# Theorem 3: Borda Satisfies FUPAC

Reminder:

## FUPAC

$r$  satisfies *FUPAC* if for every approval profile  $\mathbf{A}$ , there exists  $k \geq 1$  and a compatible ranking profile  $\mathbf{V} \sim k\mathbf{A}$  such that  $\text{App}(\mathbf{A}) \subseteq r(\mathbf{V})$ .

## Theorem 3

The Borda rule satisfies FUPAC.

# Proof of Theorem 3

## Proof.

- Fix some labeling of the alternatives  $x_1, \dots, x_n$
- For the approval profile  $\mathbf{A}$ , consider the ranking profile  $\mathbf{V} = \langle \mathbf{V}^1, \mathbf{V}^2 \rangle \sim 2\mathbf{A}$ , where
  - $V_i^1 \in \mathbf{V}^1$  contains the lexicographic ordering of approved alternatives at the top, and lexicographic ordering of the rest under it
  - $V_i^2 \in \mathbf{V}^2$  contains the reverse lexicographic ordering of approved alternatives at the top, and the reverse lexicographic ordering of the rest under it
- Let  $m(x, y) = |N_{x \succ y}| - |N_{y \succ x}|$ . Then  $\sum_{y \in X} m(x, y) = \beta(x)$  = symmetric Borda rule.
- $m(x, y) = 2(\text{App}_{\mathbf{A}}(x) - \text{App}_{\mathbf{A}}(y))$ , from which follows  $\beta(x) = \sum_{y \in X} 2(\text{App}_{\mathbf{A}}(x) - \text{App}_{\mathbf{A}}(y)) = 2m\text{App}_{\mathbf{A}}(x) - 2\sum_{y \in X} \text{App}(y)$



# Proposition 3: UPAC is Too Strong

Reminder:

## UPAC

$r$  satisfies UPAC if for every approval profile  $\mathbf{A}$ , there exists a compatible ranking profile  $\mathbf{V} \sim \mathbf{A}$  such that  $\text{App}(\mathbf{A}) \subseteq r(\mathbf{V})$ .

## Proposition 3

None of the considered rules are UPAC.

## Proof.

Take 1 voter that approves all candidates. □

# Theorem 2

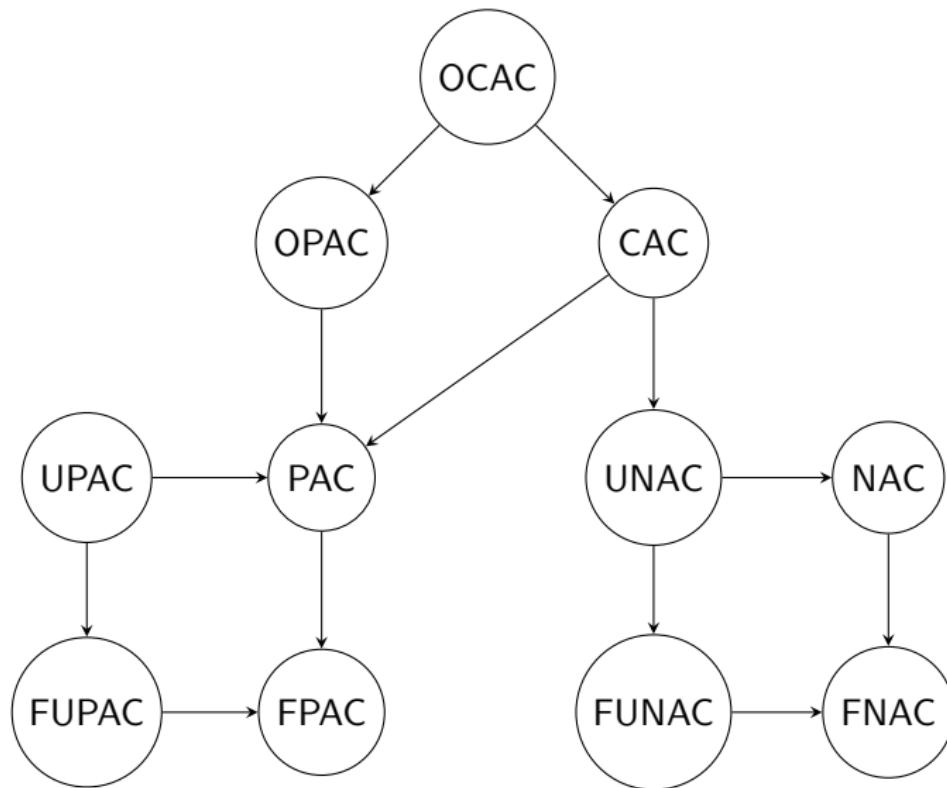
## Theorem 2

The Borda rule satisfies PAC.

# Approval Compatibility Results

|                              | OPAC | FPAC | PAC | UPAC | FUPAC |
|------------------------------|------|------|-----|------|-------|
| Plurality                    | ✓    | ✓    | ✓   | ✗    | ✗     |
| $K$ -approval ( $K \geq 2$ ) | ✗    | ✗    | ✗   | ✗    | ✗     |
| Borda                        | ✗    | ✓    | ✓   | ✗    | ✓     |

# Logical Relations Between Compatibility Notions



# Approval Compatibility: Full Classification

|                           | OCAC | OPAC | CAC | PAC |
|---------------------------|------|------|-----|-----|
| Plurality                 | ✓    | ✓    | ✓   | ✓   |
| K-approval ( $K \geq 2$ ) | ✗    | ✗    | ✗   | ✗   |
| Borda                     | ✗    | ✗    | ✓   | ✓   |
| STV                       | ✓    | ✓    | ✓   | ✓   |
| Plurality runoff          | ✓    | ✓    | ✓   | ✓   |
| Condorcet-consistent      | ✓    | ✓    | ✓   | ✓   |

|                           | FPAC | UPAC | FUPAC | NAC | FNAC | UNAC | FUNAC |
|---------------------------|------|------|-------|-----|------|------|-------|
| Plurality                 | ✓    | ✗    | ✗     | ✓   | ✓    | ✓    | ✓     |
| K-approval ( $K \geq 2$ ) | ✗    | ✗    | ✗     | ✓   | ✓    | ✗    | ✗     |
| Borda                     | ✓    | ✗    | ✓     | ✓   | ✓    | ✓    | ✓     |
| STV                       | ✓    | ✗    | ✗     | ✓   | ✓    | ✓    | ✓     |
| Plurality runoff          | ✓    | ✗    | ✗     | ✓   | ✓    | ✓    | ✓     |
| Condorcet-consistent      | ✓    | ✗    | ✓     | ✓   | ✓    | ✓    | ✓     |

# Refferences

Zoi Terzopoulou, Jérôme Lang, William Zwicker. Approval compatible voting rules. *Social Choice and Welfare*, 2025,  
ff10.1007/s00355-025-01588-9ff. fffhal-05393305f