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Social Decision Schemes

Recall: For n voters and alternatives A, a resolute Social Choice Function (SCF) F': L(A)" — A
picks an alternative given a profile of linear preference orders.

In this talk: A lottery is a probability distribution over A. Let A(A) be the set of all lotteries. A
Social Decision Scheme f: L(A)™ — A(A) outputs a lottery given a preference profile R.

We let f(R, x) denote the probability that  wins the lottery under the SDS f given the profile R.

Voter SeciEl Randomly
preferences g e > Lottery > selected
Scheme winner




Examples of Social Decision Schemes

Suppose there are n = 100 voters and m = 2 alternatives M = {a, b}.
A SDS f might result in the following:

e o iIs guaranteed to win the lottery if a > b for > 50 voters,

e b is guaranteed to win the lottery if b > a for > 50 voters,

e a and b both have a 50% chance of winning if a = b for exactly 50 voters.
This is an example of an even-chance lottery.

Another SDS might go as follows: If exactly x voters rank a = b, a has a £% chance in the lottery.

Now: Even if ¢ has a 90% majority, b still wins the lottery 10% of the time.



Recall: Strategyproofness

A voter may report a ballot that differs from her true preference order.
Consider a resolute SCF F': L(A)" — A.

We say F' is strategyproof if for each voter 7 and all possible ballots R_; of the other voters, 7
submitting her true preferences R; is optimal among all possible ballots.

Suppose ¢ ranks a = b = ¢ and the others submit ballots R_; such that b wins under F'.

Then there is no ballot ¢ can submit to make a win under F' and R_;.

Gibbard-Satterthwaite Theorem: Let F' be a surjective and strategyproof SCF for m > 3
alternatives. Then F' is a dictatorship.



Recall: Strategyproofness

A voter may report a ballot that differs from her true preference order.
Consider a resolute SCF F': L(A)" — A.

We say F' is strategyproof if for each voter 7 and all possible ballots R_; of the other voters, 7
submitting her true preferences R; is optimal among all possible ballots.

Suppose ¢ ranks a = b = ¢ and the others submit ballots R_; such that b wins under F'.

Then there is no ballot ¢ can submit to make a win under F' and R_;.

Gibbard-Satterthwaite Theorem: Let F' be a surjective and strategyproof SCF for m > 3
alternatives. Then F' is a dictatorship.

Can Social Decision Schemes help?



How to compare different SDS outcomes?

Instead of a single winner, a SDS outputs a lottery over possible winners.

What does it mean to achieve a better outcome under a SDS?

Lottery P: Lottery Q:
Candidate | a | b | ¢ Candidate |
Chance of winning ‘ 0 ‘ 1 ‘ 0 Chance of winning ‘

Voter ¢ ranks a > b > ¢, which does she prefer?
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How to compare different SDS outcomes?

Instead of a single winner, a SDS outputs a lottery over possible winners.

What does it mean to achieve a better outcome under a SDS?

Lottery P: Lottery Q:
Candidate | a | b | ¢ Candidate | a | b | ¢
Chance of winning ‘ 0 ‘ 1 ‘ 0 Chance of winning ‘ % ‘ % ‘ %

Assume a consistent utility function u;: A — R for each voter: x >=; y implies u;(x) > u;(y).

Compare the expected utilities under different lotteries: E[P| vs E[Q)].

Possible utility functions of voter 1:

Candidate | a b C
Candidate utilitiy | 6 5 1

Candidate | a b C
Candidate utilitiy | 6 2 1

Takeaway: Two lotteries may be incomparable!



Strong strategyproofness for SDSs

A SDS is strongly strategyproof if for each voter ¢ and every profile R including i's true preference,
there exists no ballot R s.t. E|f(R,, R_;)] > E|f(R)] for some consistent utility function.

A SDS is ex post efficient if x —; y for all ¢ implies f(R,y) = 0.

Theorem (Gibbard '77): Let f be a strategyproof and ex post efficient SDS. Then f is a random
dictatorship, i.e. f adopts the preferences of each voter with some fixed probability.



Weak strategyproofness for SDSs

A SDS is strongly strategyproof if for each voter ¢ and every profile R including i's true preference,
there exists no ballot R s.t. E|f(R,, R_;)] > E|f(R)] for some consistent utility function.

A SDS is weakly strategyproof if for each voter ¢ and every profile R including i's true preference,
there exists no ballot R; s.t.

e E|f(R,,R_;)] > E[f(R)] for every consistent utility function, and

e E[f(R.,R_;)] > E[f(R)] for some consistent utility function.

Nuance: There may exist a profile where for every consistent utility function, there exists a ballot
that ¢ can deviate to to increase her expected utility. Weak strategyproofness merely guarantees
that no single ballot achieves this for every consistent utility function.



Score-based SDSs

A score function s: L™ x A — R>( assigns each candidate in each profile a score such that for all
profiles R and R’ that differ only in changing i's preference from y >=; 2z to z =; v:

e localizedness: s(R,x) = s(R',x) for x ¢ {y, 2},

e monotonicity: s(R,z) < s(R', z),

e balancedness: s(R,z) = s(R’,z) implies s(R,y) = s(R,y), and

o positivity: Y -, s(R,x) > 0.

s(R,x)

Every score function s induces a score-based SDS f where f(R,x) = SITOEDE

Example: The plurality score function sp(R,x) counts how many voters rank z first.
If a is the first choice of 90% of voters, she has a 90% chance of winning the lottery:.

Aside: We can even allow one alternative = to receive score s(R,xz) = oc.



Score-based SDSs are weakly strategyproof

Theorem (Brandt-Lederer '25): Every score-based SDS is weakly strategyproof.

Proof: Let R, R’ be profiles that only differ in the ballot of 7.
Assume all scores are > 0 and that in R, voter ¢ reports preferences 1 = Tg > -+ > T,.
We distinguish three cases by comparing the score totals T := ) _s(R,z) and T" := > __s(R', x):

Goal: E[f(R)] > E[f(R’)] for some utility function u; consistent with i's preferences
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Case (i): T < T'. There exists a finite sequence of pairwise swaps in the preferences of i that
transforms R to R’ such that z; never moves “up” in the ranking.

R xq = w2 = T3 = Ty Reminder: Switching y > z to z > y:
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Theorem (Brandt-Lederer '25): Every score-based SDS is weakly strategyproof.
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Impossibility Results

Strict Preferences
e Theorem For m > 5 and odd n > 5. No even-chance SDS on L" satisfies weak

strategyproofness, Condorcet-consistency, and ex post efficiency.

e Theorem For m > 5. No pairwise, neutral, and weakly strategyproof SDS on L
satisfies ex post efficiency.

Weak Preferences
e Theorem For n > 4 and m > 4. No anonymous and neutral SDS on R satisfies ex

ante efficiency and weak strategyproofness.

e Theorem Every ex post efficient and weakly strategyproof even-chance SDS on RY is
dictatorial or bidictatorial.
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Impossibility Result

Theorem Assume that m > 5 and n > 5 is odd. No even-chance, Condorcet-consistent,
and ex post efficient SDS satisfies weak strategyproofness.

Axioms:
Even-chance: An SDS is even-chance if for every profile R, there exists some

X CA, f(R,x) = |71| for x € X and f(R,x) = 0 otherwise.

Condorcet-Consistency: f(R,x) = 1 whenever x is the Condorcet winner in R.

Ex post efficient: f(R,z) = 0 whenever x is the Pareto dominated by another
alternative



Impossibility Result

Theorem Assume that m > 5 and n > 5 is odd. No even-chance, Condorcet-consistent,
and ex post efficient SDS satisfies weak strategyproofness.

Proof Sketch
We will focus on the case when m = n = 5. Consider the following profiles R and R,

1:b,e,d,c,a 1:b,e,d,c,a
2:a,b,c,e,d 2:a,b,c e, d
R:3:e,d,c,a,b R:3:d,a,eb,c
4:b,c,a,e,d 4:b,c,a,e,d
5:e,d,a,b,c 5:e,d,a,b,c

Claim 1. f(R) ={a,b,c, e}

Claim 2: f(R) = {a,b,d, e}

A

Since player 3 ranks d above ¢, player 3 can manipulate by deviating from R to R,
contradicting weak strategyproofness.



Impossibility Result

Theorem Assume that m > 5 and n > 5 is odd. No even-chance, Condorcet-consistent,

and ex post efficient SDS satisfies weak strategyproofness.

Claim 1: f(R) ={a,b,c, e}
We will argue by the size of f(R),

e |f(R)| # 1: Follows from Condorcet-consistency, weak strategyproofness
— No Condorcet winner = No z s.t. f(R,z) =1

e f(R)| # 2: Follows from n odd, all assumed axioms
— f(R) = {x,y} iff the number of voters that rank x above y
Is the same as those who rank y above x

o |[f(R)| # 3: Follows from cases

o |f(R)| # 5: Follows from ex post efficiency

QUL s LN =

:b,e,d,c,a
:a,b,c,e,d
ce,d,c,a,b
. b,c,a,e,d
e,d,a,b,c



Impossibility Result

Theorem Assume that m > 5 and n > 5 is odd. No even-chance, Condorcet-consistent,
and ex post efficient SDS satisfies weak strategyproofness.

Goal: Show |f(R)| # 3. Proof by cases.

Consider f(R) # {b,c,¢€}. 1:b,e,d,c,a
2:a,b,ce,d
Suppose, for sake of contradiction, that f(R) = {b, c,e}. R:3:e.d,ca,b
Consider the profile R? to the right. 4:b.ca,e,d
5:e,d,a,b,c

Since b is the Condorcet winner, by Condorcet-consistency
f(R?) = {b}.

However, since player 2 ranks b above both ¢ and e, player 2 is

incentivized to deviate to R”. 1:b.e,d ca
Contradiction with weak strategyproofness! ) 2:b,a,¢,e,d
Therefore, f(R) # {b,c,e}. R™:3:e,d,ca,b
o 4:0,c,a,e,d

5:e,d,a,b,c



Impossibility Result

Theorem Assume that m > 5 and n > 5 is odd. No even-chance, Condorcet-consistent,
and ex post efficient SDS satisfies weak strategyproofness.

Claim 1: f(R) ={a,b,c, e}
We will argue by the size of f(R),

e |f(R)| # 1: Follows from Condorcet-consistency, weak strategyproofness
— No Condorcet winner = No z s.t. f(R,z) =1

1:b,e,d,c,a
e |f(R)| # 2: Follows from n odd,all assumed axioms 2:a,b,c e, d
— f(R) = {x,y} iff the number of voters that rank x above y R:3:e.d,c a,b
Is the same as those who rank y above x 4:b0,c,a,e,d
5:e,d,a,b,c
e |[f(R)| # 3: Follows from cases
o |f(R)| # 5: Follows from ex post efficiency Therefore, f(R) = {a,b,c,e} |

— e Pareto dominates d, by ex post efficiency d € f(R)



Impossibility Result

Theorem Assume that m > 5 and n > 5 is odd. No even-chance, Condorcet-consistent,
and ex post efficient SDS satisfies weak strategyproofness.

Proof Sketch
We will focus on the case when m = n = 5. Consider the following profiles R and R,

1:b,e,d,c,a 1:b,e,d,c,a
2:a,b,c,e,d 2:a,b,c e, d
R:3:e,d,c,a,b R:3:d,a,eb,c
4:b,c,a,e,d 4:b,c,a,e,d
5:e,d,a,b,c 5:e,d,a,b,c

Claim 1. f(R) ={a,b,c, e}

Claim 2: f(R) = {a,b,d, e}

A

Since player 3 ranks d above ¢, player 3 can manipulate by deviating from R to R,
contradicting weak strategyproofness.



Other Negative Results

Strict Preferences
e Theorem For m > 5 and odd n > 5. No even-chance SDS on L" satisfies weak

strategyproofness, Condorcet-consistency, and ex post efficiency.

e Theorem For m > 5. No pairwise, neutral, and weakly strategyproof SDS on L
satisfies ex post efficiency.

Weak Preferences
e Theorem For n > 4 and m > 4. No anonymous and neutral SDS on R satisfies ex

ante efficiency and weak strategyproofness.

e Theorem Every ex post efficient and weakly strategyproof even-chance SDS on RY is
dictatorial or bidictatorial.



Conclusion

Social Decision Schemes generalize social choice functions to probabilistic outcomes.
Lotteries can be incomparable and depend on a voter's utility function

Weak notion of strategyproofness which turns out to be quite subtle.

Class of score-based SDSs satisfies weak strategyproofness.

As with SCFs, combining strategyproof SDSs with a few more reasonable axioms turns out to
be impossible.



