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Social Decision Schemes

Recall: For n voters and alternatives A, a resolute Social Choice Function (SCF) F : L(A)n → A
picks an alternative given a profile of linear preference orders.

In this talk: A lottery is a probability distribution over A. Let ∆(A) be the set of all lotteries. A
Social Decision Scheme f : L(A)n → ∆(A) outputs a lottery given a preference profile R.
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preferences

We let f(R, x) denote the probability that x wins the lottery under the SDS f given the profile R.



Examples of Social Decision Schemes

Suppose there are n = 100 voters and m = 2 alternatives M = {a, b}.

A SDS f might result in the following:
• a is guaranteed to win the lottery if a ≻ b for > 50 voters,
• b is guaranteed to win the lottery if b ≻ a for > 50 voters,
• a and b both have a 50% chance of winning if a ≻ b for exactly 50 voters.

This is an example of an even-chance lottery.

Another SDS might go as follows: If exactly x voters rank a ≻ b, a has a x% chance in the lottery.

Now: Even if a has a 90% majority, b still wins the lottery 10% of the time.



Recall: Strategyproofness

A voter may report a ballot that differs from her true preference order.

Consider a resolute SCF F : L(A)n → A.

We say F is strategyproof if for each voter i and all possible ballots R−i of the other voters, i
submitting her true preferences Ri is optimal among all possible ballots.

Suppose i ranks a ≻ b ≻ c and the others submit ballots R−i such that b wins under F .

Then there is no ballot i can submit to make a win under F and R−i.

Gibbard-Satterthwaite Theorem: Let F be a surjective and strategyproof SCF for m ≥ 3
alternatives. Then F is a dictatorship.



Recall: Strategyproofness

A voter may report a ballot that differs from her true preference order.

Consider a resolute SCF F : L(A)n → A.

We say F is strategyproof if for each voter i and all possible ballots R−i of the other voters, i
submitting her true preferences Ri is optimal among all possible ballots.

Suppose i ranks a ≻ b ≻ c and the others submit ballots R−i such that b wins under F .

Then there is no ballot i can submit to make a win under F and R−i.

Gibbard-Satterthwaite Theorem: Let F be a surjective and strategyproof SCF for m ≥ 3
alternatives. Then F is a dictatorship.

Can Social Decision Schemes help?



How to compare different SDS outcomes?

Instead of a single winner, a SDS outputs a lottery over possible winners.

What does it mean to achieve a better outcome under a SDS?

Voter i ranks a ≻ b ≻ c, which does she prefer?

Lottery P:

Candidate
Chance of winning

a
0

b
1

c
0

Candidate
Chance of winning

a
1
3

b c
1
3

1
3

Lottery Q:



How to compare different SDS outcomes?

Instead of a single winner, a SDS outputs a lottery over possible winners.

What does it mean to achieve a better outcome under a SDS?

Assume a consistent utility function ui : A → R for each voter: x ≻i y implies ui(x) > ui(y).

Compare the expected utilities under different lotteries: E[P ] vs E[Q].

Possible utility functions of voter i:

Candidate
Candidate utilitiy

a
6

b
5

c
1

Lottery P:

Candidate
Chance of winning

a
0

b
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c
0

Candidate
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b c
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3

1
3

Lottery Q:

⇒ E[P ] = 5 > 4 = 6+5+1
3 = E[Q]

⇒ E[P ] = 2 < 3 = 6+2+1
3 = E[Q]

Takeaway: Two lotteries may be incomparable!

Candidate
Candidate utilitiy

a
6

b
2

c
1



Strong strategyproofness for SDSs

A SDS is strongly strategyproof if for each voter i and every profile R including i’s true preference,
there exists no ballot R′

i s.t. E[f(R′
i, R−i)] > E[f(R)] for some consistent utility function.

Theorem (Gibbard ’77): Let f be a strategyproof and ex post efficient SDS. Then f is a random
dictatorship, i.e. f adopts the preferences of each voter with some fixed probability.

A SDS is ex post efficient if x ≻i y for all i implies f(R, y) = 0.



Weak strategyproofness for SDSs

A SDS is weakly strategyproof if for each voter i and every profile R including i’s true preference,
there exists no ballot R′

i s.t.
• E[f(R′

i, R−i)] ≥ E[f(R)] for every consistent utility function, and
• E[f(R′

i, R−i)] > E[f(R)] for some consistent utility function.

Nuance: There may exist a profile where for every consistent utility function, there exists a ballot
that i can deviate to to increase her expected utility. Weak strategyproofness merely guarantees
that no single ballot achieves this for every consistent utility function.

A SDS is strongly strategyproof if for each voter i and every profile R including i’s true preference,
there exists no ballot R′

i s.t. E[f(R′
i, R−i)] > E[f(R)] for some consistent utility function.



Score-based SDSs

A score function s : Ln ×A → R≥0 assigns each candidate in each profile a score such that for all
profiles R and R′ that differ only in changing i’s preference from y ≻i z to z ≻i y:
• localizedness: s(R, x) = s(R′, x) for x /∈ {y, z},
• monotonicity: s(R, z) ≤ s(R′, z),
• balancedness: s(R, z) = s(R′, z) implies s(R, y) = s(R′, y), and
• positivity:

∑
x∈A s(R, x) > 0.

Every score function s induces a score-based SDS f where f(R, x) = s(R,x)∑
y s(R,y) .

Example: The plurality score function sP (R, x) counts how many voters rank x first.
If a is the first choice of 90% of voters, she has a 90% chance of winning the lottery.

Aside: We can even allow one alternative x to receive score s(R, x) = ∞.



Score-based SDSs are weakly strategyproof

Theorem (Brandt-Lederer ’25): Every score-based SDS is weakly strategyproof.

Proof: Let R,R′ be profiles that only differ in the ballot of i.
Assume all scores are > 0 and that in R, voter i reports preferences x1 ≻ x2 ≻ · · · ≻ xm.
We distinguish three cases by comparing the score totals T :=

∑
x s(R, x) and T ′ :=

∑
x s(R

′, x):

Goal: E[f(R)] > E[f(R′)] for some utility function ui consistent with i’s preferences
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Theorem (Brandt-Lederer ’25): Every score-based SDS is weakly strategyproof.

Proof: Let R,R′ be profiles that only differ in the ballot of i.
Assume all scores are > 0 and that in R, voter i reports preferences x1 ≻ x2 ≻ · · · ≻ xm.
We distinguish three cases by comparing the score totals T :=

∑
x s(R, x) and T ′ :=

∑
x s(R

′, x):

Case (i): T < T ′. There exists a finite sequence of pairwise swaps in the preferences of i that
transforms R to R′ such that x1 never moves “up” in the ranking.

R : x1 ≻ x2 ≻ x3 ≻ x4

x1 ≻ x3 ≻ x2 ≻ x4

x3 ≻ x1 ≻ x2 ≻ x4

R′ : x3 ≻ x1 ≻ x4 ≻ x2

Reminder: Switching y ≻ z to z ≻ y:
Localizedness: Score of x /∈ {y, z} unaffected.
Monotonicity: Score of y cannot increase.

⇒s(R, x1) ≥ s(R′, x1) ⇒ f(R, x1) =
s(R, x1)

T
>

s(R′, x1)

T ′ = f(R′, x1)

Goal: E[f(R)] > E[f(R′)] for some utility function ui consistent with i’s preferences
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>
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T ′ = f(R′, x1)

Goal: E[f(R)] > E[f(R′)] for any ui that assigns a large enough utility to x1. ✓



Score-based SDSs are weakly strategyproof

Theorem (Brandt-Lederer ’25): Every score-based SDS is weakly strategyproof.

Proof: Let R,R′ be profiles that only differ in the ballot of i.
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We distinguish three cases by comparing the score totals T :=
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Score-based SDSs are weakly strategyproof

Theorem (Brandt-Lederer ’25): Every score-based SDS is weakly strategyproof.

Proof: Let R,R′ be profiles that only differ in the ballot of i.
Assume all scores are > 0 and that in R, voter i reports preferences x1 ≻ x2 ≻ · · · ≻ xm.
We distinguish three cases by comparing the score totals T :=

∑
x s(R, x) and T ′ :=

∑
x s(R

′, x):

Goal: E[f(R)] > E[f(R′)] for some utility function ui consistent with i’s preferences

Case (iii): T = T ′. Pick the smallest h such that s(R, xh) ̸= s(R′, xh). There exists a sequence
of pairwise swaps from R to R′ such that the scores of xℓ<h never change and that xh only moves
“up” when swapped with an xℓ<h and “down” when swapped with an xℓ>h.

Reminder: Switching y ≻ z to z ≻ y:
Monotonicity: Score of y cannot increase.
Balancedness: If the score of y does not
change, neither does the score of z.

⇒s(R, xh) > s(R′, xh)

⇒f(R, xℓ) = f(R′, xℓ) for ℓ < h,

and f(R, xh) > f(R′, xh)



Score-based SDSs are weakly strategyproof

Theorem (Brandt-Lederer ’25): Every score-based SDS is weakly strategyproof.

Proof: Let R,R′ be profiles that only differ in the ballot of i.
Assume all scores are > 0 and that in R, voter i reports preferences x1 ≻ x2 ≻ · · · ≻ xm.
We distinguish three cases by comparing the score totals T :=

∑
x s(R, x) and T ′ :=

∑
x s(R

′, x):

Case (iii): T = T ′. Pick the smallest h such that s(R, xh) ̸= s(R′, xh). There exists a sequence
of pairwise swaps from R to R′ such that the scores of xℓ<h never change and that xh only moves
“up” when swapped with an xℓ<h and “down” when swapped with an xℓ>h.

Reminder: Switching y ≻ z to z ≻ y:
Monotonicity: Score of y cannot increase.
Balancedness: If the score of y does not
change, neither does the score of z.

⇒s(R, xh) > s(R′, xh)

⇒f(R, xℓ) = f(R′, xℓ) for ℓ < h,

and f(R, xh) > f(R′, xh)

Goal: E[f(R)] > E[f(R′)] for any ui that assigns a large enough utility to x1, . . . , xh. ✓



Impossibility Results

Strict Preferences

• Theorem For m ≥ 5 and odd n ≥ 5. No even-chance SDS on Ln satisfies weak
strategyproofness, Condorcet-consistency, and ex post efficiency.

• Theorem For m ≥ 5. No pairwise, neutral, and weakly strategyproof SDS on L
satisfies ex post efficiency.

Weak Preferences

• Theorem For n ≥ 4 and m ≥ 4. No anonymous and neutral SDS on RN satisfies ex
ante efficiency and weak strategyproofness.

• Theorem Every ex post efficient and weakly strategyproof even-chance SDS on RN is
dictatorial or bidictatorial.



Impossibility Result

Theorem Assume that m ≥ 5 and n ≥ 5 is odd. No even-chance, Condorcet-consistent,
and ex post efficient SDS satisfies weak strategyproofness.



Impossibility Result

Theorem Assume that m ≥ 5 and n ≥ 5 is odd. No even-chance, Condorcet-consistent,
and ex post efficient SDS satisfies weak strategyproofness.

Condorcet-Consistency: f(R, x) = 1 whenever x is the Condorcet winner in R.

Even-chance: An SDS is even-chance if for every profile R, there exists some
X ⊆ A, f(R, x) = 1

|X| for x ∈ X and f(R, x) = 0 otherwise.

Ex post efficient: f(R, x) = 0 whenever x is the Pareto dominated by another
alternative

Axioms:



Impossibility Result

Theorem Assume that m ≥ 5 and n ≥ 5 is odd. No even-chance, Condorcet-consistent,
and ex post efficient SDS satisfies weak strategyproofness.

Proof Sketch

We will focus on the case when m = n = 5. Consider the following profiles R and R̂,

R̂ :

1 : b, e, d, c, a
2 : a, b, c, e, d
3 : d, a, e, b, c
4 : b, c, a, e, d
5 : e, d, a, b, c

Claim 1: f(R) = {a, b, c, e}

Claim 2: f(R̂) = {a, b, d, e}

Since player 3 ranks d above c, player 3 can manipulate by deviating from R to R̂,
contradicting weak strategyproofness.

R :

1 : b, e, d, c, a
2 : a, b, c, e, d
3 : e, d, c, a, b
4 : b, c, a, e, d
5 : e, d, a, b, c



Impossibility Result

Theorem Assume that m ≥ 5 and n ≥ 5 is odd. No even-chance, Condorcet-consistent,
and ex post efficient SDS satisfies weak strategyproofness.

R :

1 : b, e, d, c, a
2 : a, b, c, e, d
3 : e, d, c, a, b
4 : b, c, a, e, d
5 : e, d, a, b, c

Claim 1: f(R) = {a, b, c, e}
We will argue by the size of f(R),

• |f(R)| ̸= 1: Follows from Condorcet-consistency, weak strategyproofness
– No Condorcet winner =⇒ No x s.t. f(R, x) = 1

• |f(R)| ̸= 2: Follows from n odd, all assumed axioms
– f(R) = {x, y} iff the number of voters that rank x above y

is the same as those who rank y above x

• |f(R)| ̸= 3: Follows from cases

• |f(R)| ̸= 5: Follows from ex post efficiency



Impossibility Result

Theorem Assume that m ≥ 5 and n ≥ 5 is odd. No even-chance, Condorcet-consistent,
and ex post efficient SDS satisfies weak strategyproofness.

Goal: Show |f(R)| ̸= 3. Proof by cases.
Consider f(R) ̸= {b, c, e}.

Suppose, for sake of contradiction, that f(R) = {b, c, e}.
Consider the profile R2 to the right.

Since b is the Condorcet winner, by Condorcet-consistency
f(R2) = {b}.
However, since player 2 ranks b above both c and e, player 2 is
incentivized to deviate to R2.

Contradiction with weak strategyproofness!
Therefore, f(R) ̸= {b, c, e}.

R :

1 : b, e, d, c, a
2 : a, b, c, e, d
3 : e, d, c, a, b
4 : b, c, a, e, d
5 : e, d, a, b, c

R2 :

1 : b, e, d, c, a
2 : b, a, c, e, d
3 : e, d, c, a, b
4 : b, c, a, e, d
5 : e, d, a, b, c



Impossibility Result

Theorem Assume that m ≥ 5 and n ≥ 5 is odd. No even-chance, Condorcet-consistent,
and ex post efficient SDS satisfies weak strategyproofness.

R :

1 : b, e, d, c, a
2 : a, b, c, e, d
3 : e, d, c, a, b
4 : b, c, a, e, d
5 : e, d, a, b, c

Claim 1: f(R) = {a, b, c, e}
We will argue by the size of f(R),

• |f(R)| ̸= 1: Follows from Condorcet-consistency, weak strategyproofness
– No Condorcet winner =⇒ No x s.t. f(R, x) = 1

• |f(R)| ̸= 2: Follows from n odd,all assumed axioms
– f(R) = {x, y} iff the number of voters that rank x above y

is the same as those who rank y above x

• |f(R)| ̸= 3: Follows from cases

• |f(R)| ̸= 5: Follows from ex post efficiency
– e Pareto dominates d, by ex post efficiency d ̸∈ f(R)

Therefore, f(R) = {a, b, c, e} !



Impossibility Result

Theorem Assume that m ≥ 5 and n ≥ 5 is odd. No even-chance, Condorcet-consistent,
and ex post efficient SDS satisfies weak strategyproofness.

Proof Sketch

We will focus on the case when m = n = 5. Consider the following profiles R and R̂,

R̂ :

1 : b, e, d, c, a
2 : a, b, c, e, d
3 : d, a, e, b, c
4 : b, c, a, e, d
5 : e, d, a, b, c

Claim 1: f(R) = {a, b, c, e}

Claim 2: f(R̂) = {a, b, d, e}

Since player 3 ranks d above c, player 3 can manipulate by deviating from R to R̂,
contradicting weak strategyproofness.

R :

1 : b, e, d, c, a
2 : a, b, c, e, d
3 : e, d, c, a, b
4 : b, c, a, e, d
5 : e, d, a, b, c



Other Negative Results

Strict Preferences

• Theorem For m ≥ 5 and odd n ≥ 5. No even-chance SDS on Ln satisfies weak
strategyproofness, Condorcet-consistency, and ex post efficiency.

• Theorem For m ≥ 5. No pairwise, neutral, and weakly strategyproof SDS on L
satisfies ex post efficiency.

Weak Preferences

• Theorem For n ≥ 4 and m ≥ 4. No anonymous and neutral SDS on RN satisfies ex
ante efficiency and weak strategyproofness.

• Theorem Every ex post efficient and weakly strategyproof even-chance SDS on RN is
dictatorial or bidictatorial.



Conclusion

• Social Decision Schemes generalize social choice functions to probabilistic outcomes.

• Lotteries can be incomparable and depend on a voter’s utility function

• Weak notion of strategyproofness which turns out to be quite subtle.

• Class of score-based SDSs satisfies weak strategyproofness.

• As with SCFs, combining strategyproof SDSs with a few more reasonable axioms turns out to
be impossible.


