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Reminder: Instant Runoff Voting (IRV)
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Reminder: Instant Runoff Voting (IRV)
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Reminder: Instant Runoff Voting (IRV)
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Reminder: Instant Runoff Voting (IRV)
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Reminder: Instant Runoff Voting (IRV)
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a ranking of the candidates

1

2

E

D

B

A

C

A B C D E

The score of each candidate is 
their number of 1st place

48% 52%

0%0%0%

And so on, until one candidate remains



Théo Delemazure 7

Reminder: Instant Runoff Voting (IRV)
Voters provide 

a ranking of the candidates
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Reminder: Instant Runoff Voting (IRV)
Ireland (since 1937) Australia (since 1918)

Alaska, USA (since 2022) Maine, USA (since 2018) Hong Kong (since 1998)

Fiji (since 1999)

Also used for primaries in some countries
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Properties of IRV

Monotonicity: if a candidate is the winner and we improve its rank in 
some rankings, it should remain the winner.

Independence of clones: adding/removing a clone of a candidate 
does not change the results of the election.

Majority criterion: if a majority of voters rank one candidate first, 
this candidate should win.
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Allowing for Indifferences

Fig. A ballot cast in San Francisco mayor 
election, containing indifferences
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What if a voter is indifferent between 
several candidates?

Voters can cast weak orders
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Question:
How to generalize Instant Runoff Voting 
to weak orders?
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Outline of the talk

Part 1. 
The different solutions

Part 2. 
Axiomatic analysis

Part 3. 
Experimental analysis

This talk is based on a paper published at EC’ 2024, 
which is a joint work with 

Dominik Peters, Paris-Dauphine University.



Part 1
Generalizations of IRV with indifferences
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Model and notations

We have a set of voters 𝑉 = {1,… , 𝑛} and of candidates 𝐶 = 𝑐1, … , 𝑐𝑚 .

A weak order ≽ is a complete pre-order (reflexive, transitive and complete 
binary relation) over the set of candidates 𝐶.

We denote ≽= 𝐶1 ≻ 𝐶2 ≻ ⋯ ≻ 𝐶𝑘 with 𝐶𝑗 ⊆ 𝐶. We call the 𝐶𝑗 the 
indifference classes of ≽ and 𝜏≽ = (|𝐶1|, … , |𝐶𝑘|) its order type.

A preference profile is a collection of weak orders 𝑃 = (≽1, … , ≽𝑛).

A voting rule is a function that associates each profile to one or (in case of 
ties) several winning candidates.
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Example

𝐴, 𝐵 ≻ 𝐶 ≻ 𝐷

𝐴, 𝐵, 𝐷 ≻ 𝐶

𝐵 ≻ 𝐴, 𝐶 ≻ {𝐷}

𝐶 ≻ 𝐴 ≻ {𝐵, 𝐷}

𝐷 ≻ 𝐴 ≻ 𝐵 ≻ {𝐶}

Order typePreferences

(2, 1, 1)

(3, 1)

(1, 2, 1)

(1, 1, 2)

(1, 1, 1, 1)
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How to design generalization?

𝑨,𝑩 ≻ 𝐶 ≻ 𝐷

𝑨,𝑩,𝑫 ≻ 𝐶

𝑩 ≻ 𝐴, 𝐶 ≻ {𝐷}

𝑪 ≻ 𝐴 ≻ {𝐵,𝐷}

𝑫 ≻ 𝐴 ≻ 𝐵 ≻ {𝐶}

We want to keep the idea of repeatedly 
eliminating a candidate with the lowest 
score, with score being computed at each 
step by looking at the top indifference 
class of every order.

Question: how should the score be 
computed?
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Rule 1: Split-IRV
Split-IRV (Meek and Hill, 1994)

Each voter gives 1/𝑘 point to the 𝑘 candidates that are tied as first 
among the remaining candidates in their ranking.
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Rule 1: Split-IRV
Split-IRV (Meek and Hill, 1994)

Each voter gives 1/𝑘 point to the 𝑘 candidates that are tied as first 
among the remaining candidates in their ranking.

Equivalent definition: if a weak order 
admit ℓ possible completions into a 
full ranking, replace every weak order 
by all its possible completions each 
with weight 1/ℓ and compute the 
winner.
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Rule 2: Approval-IRV

1  

2

3

E

D

B

A

C

Approval-IRV (Janson, 2016)

Each voter gives 1 point to the 𝑘 candidates that are tied as first 
among the remaining candidates in their ranking.

1

1

E

D



Théo Delemazure 20

Example

𝐴, 𝐵 ≻ 𝐶 ≻ 𝐷

𝐴, 𝐵, 𝐷 ≻ 𝐶

𝐵 ≻ 𝐴, 𝐶 ≻ {𝐷}

𝐶 ≻ 𝐴 ≻ {𝐵, 𝐷}

𝐷 ≻ 𝐴 ≻ 𝐵 ≻ {𝐶}

Approval-IRV Split-IRV 

4th

3rd

2nd

1st

𝐴: 𝐵: 𝐶: 𝐷:
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Example

𝐴, 𝐵 ≻ 𝐶 ≻ 𝐷

𝐴, 𝐵, 𝐷 ≻ 𝐶

𝐵 ≻ 𝐴, 𝐶 ≻ {𝐷}

𝐶 ≻ 𝐴 ≻ {𝐵, 𝐷}

𝐷 ≻ 𝐴 ≻ 𝐵 ≻ {𝐶}

Approval-IRV Split-IRV 

4th

3rd

2nd

1st

𝐴: 2 𝐵: 3 𝐶: 1 𝐷: 2
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Example

𝐴, 𝐵 ≻ 𝐷

𝐴, 𝐵, 𝐷

𝐵 ≻ 𝐴 ≻ {𝐷}

𝐴 ≻ {𝐵, 𝐷}

𝐷 ≻ 𝐴 ≻ 𝐵

Approval-IRV Split-IRV 

4th

3rd

2nd

1st

𝐴: 3 𝐵: 3 𝐶: 0 𝐷: 2

𝐶
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Example

𝐴, 𝐵

𝐴, 𝐵

𝐵 ≻ 𝐴

𝐴 ≻ {𝐵}

𝐴 ≻ 𝐵

Approval-IRV Split-IRV 

4th

3rd

2nd

1st

𝐴: 4 𝐵: 3 𝐶: 0 𝐷: 0

𝐶

𝐷
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Example

𝐴, 𝐵

𝐴, 𝐵

𝐵 ≻ 𝐴

𝐴 ≻ {𝐵}

𝐴 ≻ 𝐵

Approval-IRV Split-IRV 

4th

3rd

2nd

1st

𝐴: 4 𝐵: 3 𝐶: 0 𝐷: 0

𝐶
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𝐴
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Example

Approval-IRV Split-IRV 

4th

3rd

2nd

1st

𝐶

𝐷

𝐵

𝐴

𝐴: 1/2 + 1/3 𝐵: 1/2 + 1/3 + 1 𝐶: 1 𝐷: 1/3 + 1

𝐴, 𝐵 ≻ 𝐶 ≻ 𝐷

𝐴, 𝐵, 𝐷 ≻ 𝐶

𝐵 ≻ 𝐴, 𝐶 ≻ {𝐷}

𝐶 ≻ 𝐴 ≻ {𝐵, 𝐷}

𝐷 ≻ 𝐴 ≻ 𝐵 ≻ {𝐶}
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Example

Approval-IRV Split-IRV 

4th

3rd

2nd

1st

𝐶

𝐷

𝐵

𝐴

𝐴: 0 𝐵: 1 + 1/2 + 1 𝐶: 1 𝐷: 1/2 + 1

𝐵 ≻ 𝐶 ≻ 𝐷

𝐵,𝐷 ≻ 𝐶

𝐵 ≻ 𝐶 ≻ {𝐷}

𝐶 ≻ {𝐵, 𝐷}

𝐷 ≻ 𝐵 ≻ {𝐶}

𝐴
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Example

Approval-IRV Split-IRV 

4th

3rd

2nd

1st

𝐶

𝐷

𝐵

𝐴

𝐴: 0 𝐵: 3 𝐶: 0 𝐷: 2

𝐵 ≻ 𝐷

𝐵,𝐷

𝐵 ≻ {𝐷}

𝐵,𝐷

𝐷 ≻ 𝐵

𝐴

𝐶
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Example

Approval-IRV Split-IRV 

4th

3rd

2nd

1st

𝐶

𝐷

𝐵

𝐴

𝐴: 0 𝐵: 3 𝐶: 0 𝐷: 2

𝐵 ≻ 𝐷

𝐵,𝐷

𝐵 ≻ {𝐷}

𝐵,𝐷

𝐷 ≻ 𝐵

𝐴

𝐶

𝐵

𝐷
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The family of runoff scoring rules
A scoring system is a function 𝑠 that associates each order type 𝜏 to a 
scoring vector of the same length 𝑠 𝜏 = 𝑠 𝜏 1, … , 𝑠 𝜏 𝜏 .  Given a weak 
order ≽= 𝐶1 ≻ 𝐶2 ≻ ⋯ ≻ 𝐶𝑘 of order type 𝜏, candidates in indifference 
class 𝑪𝒋 receive 𝒔 𝝉 𝒋 points.

A runoff scoring rule based on the scoring system 𝑠 works by step and at 
each step it eliminates the candidate with the lowest score.

Approval-IRV is based on the scoring system such that 𝑠(𝜏) = (1,0,… , 0)
for all order types 𝜏.

Split-IRV is based on the scoring system such that 𝑠(𝜏) = (1/𝜏1, 0, … , 0)
for all order types 𝜏.



Part 2
An axiomatic comparison
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Axiom 1: Independence of Clones

𝐴, 𝐵 ≻ 𝐶 ≻ {𝐶′}

𝐴 ≻ 𝐶, 𝐶′ ≻ {𝐵}

𝐵, 𝐶, 𝐶′ ≻ {𝐴}

𝐶 ≻ {𝐶′} ≻ 𝐵 ≻ {𝐴}

𝐴, 𝐵 ≻ 𝐶

𝐴 ≻ 𝐶 ≻ {𝐵}

𝐵, 𝐶 ≻ {𝐴}

𝐶 ≻ 𝐵 ≻ {𝐴}

The rule returns the 
same candidates in 
these two profiles

Independence of clones (Tideman, 1987)

Adding a “clone” of a candidate should not change significantly the 
result of the election.
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Axiom 1: Independence of Clones

Independence of clones (Tideman, 1987)

Adding a “clone” of a candidate should not change significantly the 
result of the election.

When we restrict the profile to full rankings, IRV satisfies this axiom.

Approval-IRV satisfies this axiom.

Split-IRV fails this axiom.
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Axiom 2: Respect for Cohesive Majorities

Majority Criterion (Lepelley, 1992)

If a majority of voters rank one candidate first, this candidate 
should be the winner.

When we restrict the profile to full rankings, IRV satisfies this axiom.

This axiom is too strong for the weak order case (and not desirable).
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Axiom 2: Respect for Cohesive Majorities

Respect for cohesive majorities

If a majority of voters rank one candidate first, the winner 
should be ranked first by one of these voters.

When we restrict the profile to full rankings, IRV satisfies this axiom.

Approval-IRV satisfies this axiom.

Split-IRV fails this axiom.
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Characterization (1) of Approval-IRV

First characterization of Approval-IRV

Approval-IRV is the only runoff scoring rule for weak orders that satisfies 
both independence of clones and respect for cohesive majorities.
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Axiom 3: Indifference Monotonicity
Monotonicity (Fishburn, 1982)

If some candidate is the winner, and we increase the 
rank of this candidate in one ranking, it should still win.
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IRV fails 
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Axiom 3: Indifference Monotonicity
Weak monotonicity

If some candidate is the winner, and we increase the rank 
of this candidate in one ranking in which this candidate 
is not tied, it should still win.
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Dan
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Ann

Cora

Bob wins
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Eddy

Dan

Bob

Ann

Cora

Bob still wins

Split-IRV

Approval-IRV
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Characterization (2) of Approval-IRV

Second characterization of Approval-IRV

Approval-IRV is the only runoff scoring rule for weak orders that 
generalizes IRV and satisfies weak monotonicity



Part 3
Experimental analysis
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What experiments to run?

Generate preference profiles.

Compute the Approval-IRV and Split-IRV winners.

Analyze the results:
• How similar are the two rules in practice?
• How similar are these rules to known SCF?
• Which rule return the “best” winner?
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Generating datasets

Step 1: Generate full rankings Step 2: Introduce indifferences

How? How?
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Generating datasets

Step 1: Generate full rankings Step 2: Introduce indifferences

How? How?

Synthetic data: 
Probabilistic models

Real data
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Synthetic data: The impartial culture (IC)

In the Impartial Culture (IC) model, every possible ranking as the same 
probability to be sampled i.i.d. for each voter:

𝑃 ≻𝑖=≻ =
1

𝑚!
For all ranking ≻ ∈ 𝐿 𝐴 and all voter 𝑖 ∈ 𝑉.

Remark: IC is very simplistic and unrealistic so it should not be the only 
model used, but it is a frequently used model, so it serves as a baseline.
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Synthetic data: Mallows’ model

In a Mallows’ model, all rankings are noisy approximations of a ground 
truth ranking. More formally, there exists a central ranking ≻∗ such 
that it is more likely to sample rankings closer to ≻∗. The distance 
between rankings is computed with the Kendall-tau distance:

𝑑𝐾𝑇 ≻1, ≻2 = | 𝑥, 𝑦 ∈ 𝐶 ∶ 𝑥 ≻1 𝑦 and 𝑦 ≻2 𝑥 |

Example: The KT distance between 𝑎 ≻1 𝑏 ≻1 𝑐 ≻1 𝑑 and 
𝑐 ≻2 𝑏 ≻2 𝑎 ≻2 𝑑 is 3 because the rankings are disagreeing on 3 pairs 
of candidates. 
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Synthetic data: Mallows’ model

Then, we sample rankings based on the central ranking ≻∗ and a 
dispersion parameter 𝜙 ∈ [0,1]:

𝑃 ≻𝑖=≻ ≻∗, 𝜙 =
𝜙𝑑𝐾𝑇 ≻,≻∗

𝐾
with 𝐾 a normalization constant.

Question: what happens when 𝜙 = 0? And when 𝜙 = 1?
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Mixture of Mallows

In a mixture of 𝒌 Mallows, there are 𝑘 central rankings (≻1
∗ , … , ≻𝑘

∗ ) and 
probabilities (𝑝1, … , 𝑝𝑘) with σ𝑝𝑗 = 1. For each voter, we select one 
Mallows according to the probabilities 𝑝𝑗 𝑗

and we draw a random 

ranking according to the Mallows model with central ranking ≻𝑗
∗ and 

dispersion 𝜙.

This enables to have more diversity in the preferences.
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Synthetic data: Euclidean Preferences
Voters Candidates

Positions of voters and 
candidates are sampled 
randomly in the space.
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Synthetic data: Euclidean Preferences
Voters Candidates

Voters prefer candidates 
that are closer to them:
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3

4

5
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Synthetic data: Euclidean Preferences
Voters Candidates

We can also obtain weak 
orders:

1  

2

3

𝑟2𝑟3𝑟4𝑟
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Synthetic data: The map of elections

Figure. Map of elections with the isomorphic swap 
distance. Picture from Boehmer et al. (2022b)

• Preference profiles sampled 
from various probabilistic 
models.

• Similar profiles appear close 
to each other on the map of 
elections.
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Real data: Preflib.org

Screenshot from preflib.org

• Preference profiles from 
real-world elections.  

• Also contains tools for 
computational social 
choice.

We take the Irish dataset from 
Preflib.

https://preflib.github.io/PrefLib-Jekyll/
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Real data: Voter Autrement

Screenshot from theo.delemazure.fr/datasets/

• Preference profiles from 
voting experiments in 
parallel to large-scale 
political elections.

https://theo.delemazure.fr/datasets/
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Real data: Collect your own dataset

• If you want a very specific preference format or data type, you 
can run your own experiments.

• You can either build a website (with helps of LLM) or use simple 
tools such as Google form or pref.tools/vote/

• You can share it to friends or on social media (but it will not yield 
a representative sample).

https://pref.tools/vote/
https://pref.tools/vote/
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From rankings to weak orders

𝐴 ≻ 𝐵 ≻ 𝐶 ≻ 𝐷 ≻ 𝐸

Given a full ranking and a parameter 𝑝 ∈ [0,1], we consider each pair of 
successive candidates in the ranking and add a tie between them 
with probability 𝒑. 

𝑝 𝑝 𝑝 𝑝
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From rankings to weak orders

𝐴 ∼ 𝐵 ≻ 𝐶 ≻ 𝐷 ~ 𝐸

Given a full ranking and a parameter 𝑝 ∈ [0,1], we consider each pair of 
successive candidates in the ranking and add a tie between them 
with probability 𝒑. 

𝑝 𝑝 𝑝 𝑝

𝐴, 𝐵 ≻ 𝐶 ≻ {𝐷, 𝐸}
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Experiment settings

For each dataset, average over 10 000 sampled profiles.

Profiles of 𝑛 = 500 voters and 𝑚 = 10 candidates.

Indifference parameters 𝑝 and 𝑟 varying between 0 (full rankings) and 
1 (complete indifference).



Théo Delemazure 57

Results: Similarities between rules

Figure. Frequency of agreement between Approval-IRV and Split-IRV on our 
datasets (depending on the value of the indifference parameter 𝑝 or 𝑟). 
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Results: Similarities with classical SCF

Figure. Frequency of agreement between the rules and linear-order IRV (based on full rankings) 
on our datasets. (depending on the value of the indifference parameter 𝑝 or 𝑟). 
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Results: Similarities with classical SCF

Figure. Frequency of finding the Condorcet winner, and frequency of such candidate existing on 
our datasets. (depending on the value of the indifference parameter 𝑝 or 𝑟). 
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Results: Similarities with classical SCF

Figure. Average Borda score of the winner (normalized by dividing by the number of voters) on 
our datasets. (depending on the value of the indifference parameter 𝑝 or 𝑟). 
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Results: Similarities with classical SCF
Figure. Map of elections, showing the difference 

in Borda score between the Approval-IRV and 
Split-IRV winners in the coin-flip model, with 

blue dots indicating that Approval-IRV selected 
on average a winner with higher Borda score.
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Results: Utilitarian perspective
Voters Candidates
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Results: Utilitarian perspective
Voters Candidates

The cost of a candidate is 
the sum of its distance to all 
the voters.

The lower the cost, the 
better
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Results: Utilitarian perspective
Figure. The frequency of 

returning the candidate with the 
lowest cost for each rule.



Conclusion
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Conclusion
Approval-IRV is the only rule that satisfies the generalization in the weak order 
setting of desirable axioms satisfied by IRV.

Approval-IRV is the only generalization of IRV to the weak order setting that 
satisfies a weak monotonicity property.

Empirically, Split-IRV will return the IRV winner more often while Approval-IRV 
will look for a more consensual candidate (because of its “approval” part).

In the Euclidean setting, Approval-IRV often return better winners than Split-
IRV from a utilitarian perspective.

Also in the paper: Generalization of STV, the multi-winner versions of IRV.



Théo Delemazure 67

Thanks for your attention!
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