Approximate Clones with Ordinal Preferences

Théo Delemazure

The Spoiler Effect

Russia 2021 legislative election

District 216 (St Petersburg)

Sergey Solovyov "United Russia" (Poutine)

Boris Vishnevskiy "Yabloko" (Social-liberal)

The Spoiler Effect

Russia 2021 legislative election District 216 (St Petersburg)

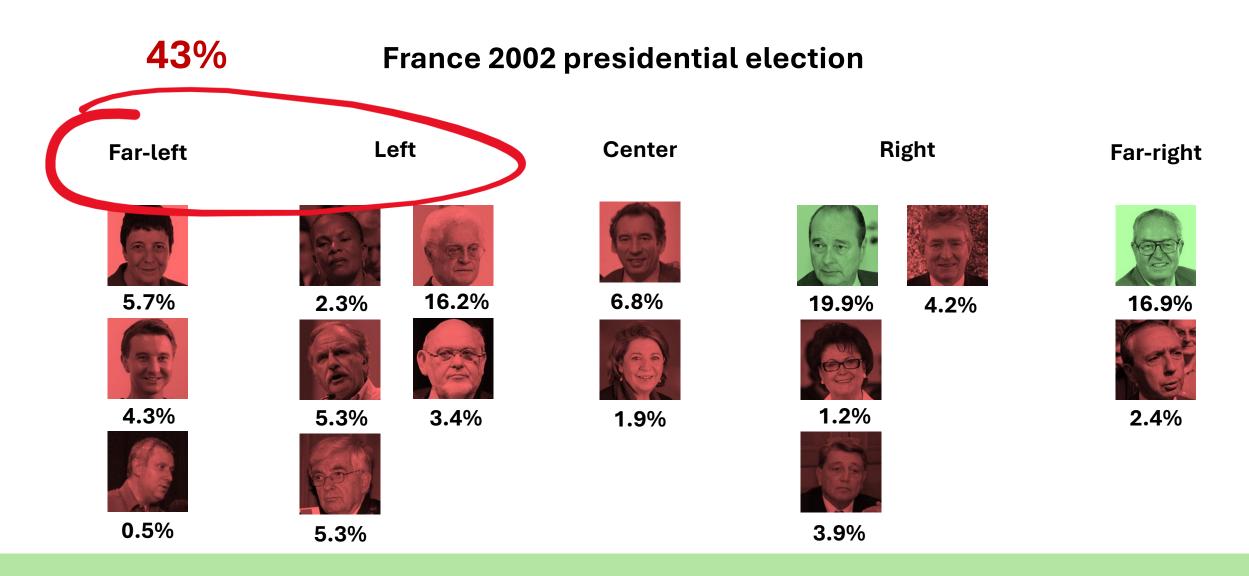
Sergey Solovyov "United Russia" (Poutine)

Boris Vishnevskiy "Yabloko" (Social-liberal)

Boris Vishnevskiy "The Greens"

Boris Vishnevskiy
Independent

The Spoiler Effect



Clones

$$A > B > C > D > E$$
 $B > A > E > D > C$
 $C > B > A > E > D$
 $D > C$
 $D > C > A > B > E$
 $D > C$
 $D > C > A > C$
 $D > C$
 $D > C > C$
 $D > C$
 $C > C$

A and B are clones if all voters rank them adjacently

$$A > B > C > D > E$$
 $B > A > E > D > C$
 $C > B > A > E > D$
 $D > C$
 $D > C > A > B > E$
 $D > C$
 $D > C > A > C$
 $D > C$
 $D > C > C$
 $D > C$

A or B is the winner

D is the winner

A is the winner

D is the winner

Instant Runoff Voting (used in Ireland, Australia, some US states, etc.) is independent of clones.

Also Ranked Pairs and Schulze's method.

Approximate Clones

$$A > B > C > D > E$$
 $B > E > D > A > C$
 $C > B > A > E > D$
 $D > C > A > C$
 $D > C > A > B > E$
 $D > C > C$
 $D > C > C$
 $D > C$

A and **B** are approximate clones

Questions

1 When are candidates "approximate clones"?

Are there voting rules that are **independent of** approximate clones (in theory and in practice)?

Do clones and approximate clones **actually exist** in real-world datasets?

Approximate Clones

Model, and perfect clones

- Voters $V = \{1, \dots, n\}$, candidates $C = \{c_1, \dots, c_m\}$.
- Preference profile $P = (\succ_1, ..., \succ_n)$.

Perfect Clones

Two candidates x and y are perfect clones if for every voter $i \in V$, there is no $z \in C$ such that x > z > y or y > z > x.

We focus on pairs of candidates, but our negative results can be extended to larger sets of clones.

Approximate clones: α -deletion clones

α -deletion Clones

Two candidates x and y are α -deletion clones if we can remove at most $\alpha \cdot n$ voters from the profile and obtain perfect clones.

$$A > B > C > D > E$$
 $B > E > D > A > C$
 $C > B > A > E$
 $D > C > D$

In this profile, \mathbf{A} and \mathbf{B} are $\frac{1}{4}$ -deletion clones.

[&]quot;MaxClones" in Janeczko et al. (2024)

[&]quot;Independent Clones" in Faliszewski et al. (2025)

Approximate clones: α -deletion clones

Profile 1

Profile 2

60%
$$A > B > C > D > E$$
 70% $A > B > C > D > E$ 40% $B > E > A > D > C$ 30% $B > E > D > C > A$

In which profile A and B are closer to be clones?

19REF 2025

Approximate clones: β -swap clones

β -swap Clones

Two candidates x and y are β -swap clones if we can perform at most $\beta \cdot n$ swaps of adjacent candidates and obtain perfect clones.

$$A > B > C > D > E$$
 $B > E > D > A > C$
 $C > B > A > E$
 $D > C > D$

In this profile, \boldsymbol{A} and \boldsymbol{B} are 2/4-swap clones.

14PREF 2025

Independence of Clones (Tideman, 1987)

A rule f is independent of clones if for every profile P in which a and a' are clones, we have:

- 1. For all $z \neq a, a'$, we have $z \in f(P)$ if and only if $z \in f(P_{-a'})$,
- 2. We have $f(P) \cap \{a, a'\} \neq \emptyset$ if and only if $a \in f(P_{-a'})$.

IRV, Ranked Pairs and Schulze's method satisfy Independence of Clones.

Positional Scoring Rules *fail* Independence of Clones.

Independence of Approximate Clones

A rule f is independent of α -deletion clones if for every profile P in which a and a' are α -deletion clones, we have:

- 1. For all $z \neq a, a'$, we have $z \in f(P)$ if and only if $z \in f(P_{-a'})$,
- 2. We have $f(P) \cap \{a, a'\} \neq \emptyset$ if and only if $a \in f(P_{-a'})$.

Independence of Approximate Clones

A rule f is independent of α -deletion clones if for every profile P in which a and a' are α -deletion clones, we have:

- 1. For all $z \neq a, a'$, we have $z \in f(P)$ if and only if $z \in f(P_{-a'})$,
- 2. We have $f(P) \cap \{a, a'\} \neq \emptyset$ if and only if $a \in f(P_{-a'})$.

All rules consistent with the majority rule when m=2 **fail** Independence of Approximate Clones (for any $\alpha>0$).

Weak Independence of Approximate Clones

A rule f is weakly independent of α -deletion clones if for every profile P in which a and a' are α -deletion clones, we have for either $P' = P_{-a}$ or $P' = P_{-a'}$ 1. For all $z \neq a, a'$, we have $z \in f(P)$ if and only if $z \in f(P')$,

2. We have $f(P) \cap \{a, a'\} \neq \emptyset$ if and only if $a \in f(P')$.

Weak Independence of Approximate Clones

A rule f is weakly independent of α -deletion clones if for every profile P in which a and a' are α -deletion clones, we have for either $P' = P_{-a}$ or $P' = P_{-a'}$ 1. For all $z \neq a, a'$, we have $z \in f(P)$ if and only if $z \in f(P')$,

2. We have $f(P) \cap \{a, a'\} \neq \emptyset$ if and only if $a \in f(P')$.

When $m \ge 4$, IRV, Ranked Pairs and Schulze's method all **fail** Weak Independence of Approximate Clones (for any $\alpha > 0$).

Weak Independence of Approximate Clones

A rule f is weakly independent of α -deletion clones if for every profile P in which a and a' are α -deletion clones, we have for either $P' = P_{-a}$ or $P' = P_{-a'}$ 1. For all $z \neq a, a'$, we have $z \in f(P)$ if and only if $z \in f(P')$,

2. We have $f(P) \cap \{a, a'\} \neq \emptyset$ if and only if $a \in f(P')$.

When m=3, IRV **satisfy** Weak Independence of 1/3-deletion Clones, and Ranked Pairs and Schulze satisfy it for any α .

Note that when m=3, α and β are the same.

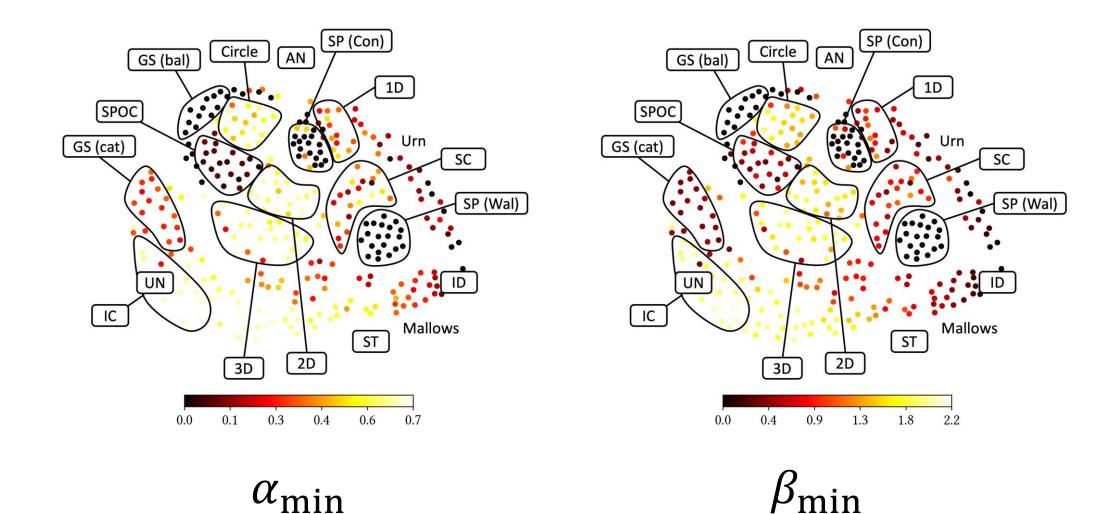
1PREF 2025 2⁻⁻

Empirical Analysis

Two questions

- 1 Do clones and approximate clones **actually exist** in real-world datasets?
- 2 Are voting rules independent of *approximate* clones in practice?

Synthetic Data (map of elections)



French Presidential Elections

Context: French Presidential

Elections between 2007 and 2022.

Official rule: Plurality with Runoff.

Proposed rule: IRV.

Candidates: between 10 and 12.

Datasets: 5

	0 111	0 111 . 0		
Dataset	Candidate 1	Candidate 2	α	β
2007-in situ	Besancenot	Buffet	0.54	1.54
2017-in situ	Cheminade	Lassalle	0.47	1.14
2017-in situ	Arthaud	Poutou	0.49	1.34
2017-in situ	Macron	Hamon	0.60	1.73
2012-online	Arthaud	Poutou	0.34	0.56
2017-online	Arthaud	Poutou	0.43	0.87
2017-online	Mélenchon	Hamon	0.57	1.45
2022-online	Arthaud	Poutou	0.50	0.97
2022-online	Zemmour	Le Pen	0.51	1.32

Pairs of candidates with $\alpha \leq 0.6$

Scotland Elections

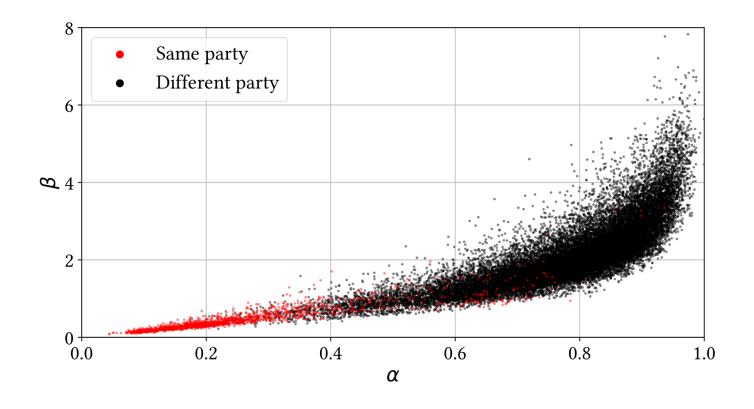
Context: Local Committee Elections in Scotland.

Official rule: IRV.

Candidates: Between 3 and 14.

Datasets: 1 070.

Particularity: Often several candidates from the same party.



Habermas Machine

Context: Mini-jury (5 voters) deliberation with AI statements.

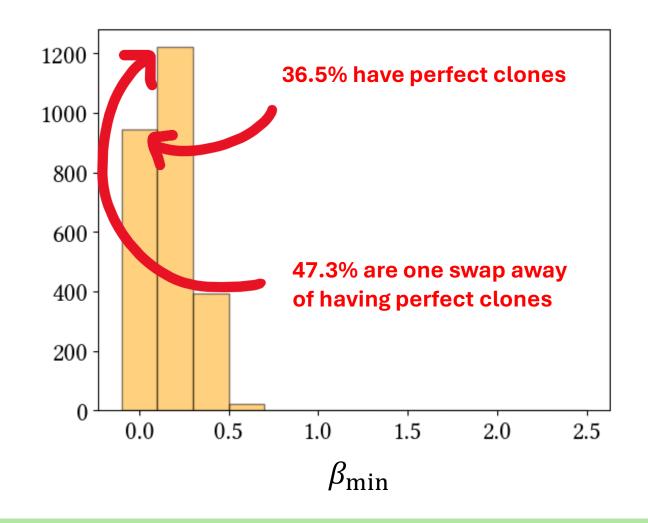
Official rule: Schulze.

Candidates: 4.

Datasets: 2581.

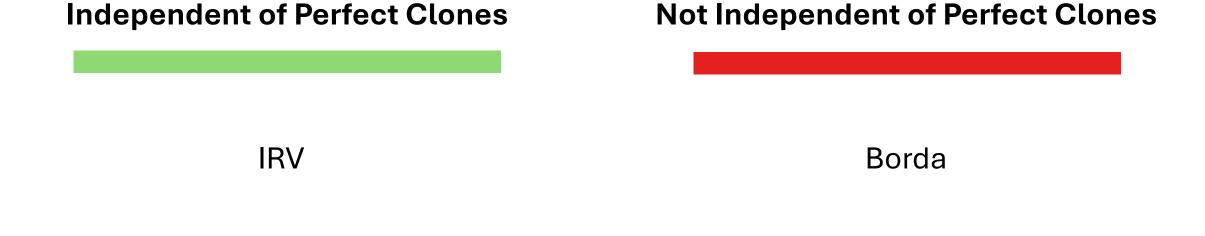
Particularity: Statements can be

very similar.



Independence in practice

Ranked Pairs

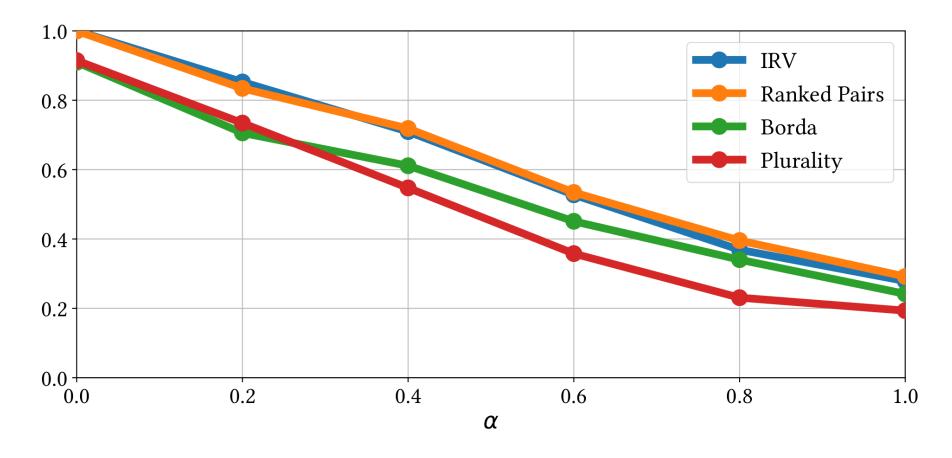


MPREF 2025

Plurality

Independence in practice

% of pairs for which independence is satisfied, depending on their proximity. (Habermas dataset)



Independence in practice

% of pairs for which weak independence is satisfied, depending on their proximity. (Habermas dataset)



Conclusion

Conclusion

- 1 We discussed and compared two notions of approximate clones.
- In the worst case and for $m \geq 4$, traditional rules **do not satisfy** weak independence of approximate clones (but more positive results for m=3).
- In practice, it is more frequent to **observe approximate clones** than perfect clones.
- In practice, the strong independence seems to be a more relevant axiom than the weak version.