Reallocating Wasted Votes in Proportional Parliamentary Elections with Thresholds

Théo Delemazure

Joint work with Rupert Freeman, Jérôme Lang, Jean-François Laslier and Dominik Peters (published at EC-2025)

1. Computational Social Choice

What is social choice?

Social Choice Theory:

Designing and analyzing methods for collective decision making

Political election

Decide on a date

Jury decision

Voters

Candidates

Candidates

A winner is selected

A **committee** is selected

A parliament is selected

Uninominal Ballots

Ballot formats

Bob

Uninominal Ballots

1 Bob

2 Ann

3 Dan

4 Cora

Rankings

Ann

✓ Bob

✓ Cora

Dan

Approval Ballots

Bob 5

Ann 2

Dan 3

Cora 3

Scores

2. Single-winner voting with rankings

We have:

- A set of **voters** $V = \{1, 2, ..., n\}$.
- A set of candidates $C = \{c_1, ..., c_m\}$.
- A preference **profile** $P = (\succ_1, ..., \succ_n) \in \mathcal{L}(C)^n$ of rankings of voters over candidates.

We want:

- A winning candidate $w \in C$.

For this, we use:

- A voting rule $f: \mathcal{L}(C)^n \to C$.

14

Question: which voting rule should we use?

Question: which voting rule should we use?

- **Design** rules, analyze their complexity, and propose algorithms to compute them.
- Check the **normative properties** (the *axioms*) satisfied by these rules.
- Run simulations of the rules on real or synthetic preference data.

Design rules: *Plurality*

Plurality: The winner is the candidate that is ranked first by the most voters.

40%
$$A > B > D > C$$

25% $B > C > D > A$
20% $C > B > D > A$ Winner: A

15%
$$D > C > A > B$$

Design rules: *Veto*

Veto: The winner is the candidate that is ranked last by the fewest voters.

$$40\% \quad A > B > D > C$$

$$25\%$$
 $B > C > D > A$

$$20\%$$
 $C > B > D > A$

15%
$$D > C > A > B$$

Winner: D

1 Design rules: Borda

Borda: Voters give m-1 points to the first candidate, m-2 to the second, and so on. The winner is the candidate with the highest score.

40%
$$A > B > D > C$$

25% $B > C > D > A$
20% $C > B > D > A$
15% $D > C > A > B$

Design rules: The family of *Scoring rules*

Plurality Borda Veto

Design rules: *Instant Runoff Voting* (IRV/STV)

Instant Runoff Voting (IRV): Repeatedly eliminate the candidate with the fewest 1st-place votes until one candidate gets 50% of the votes.

40%
$$A > B > D > C$$

25% $B > C > D > A$
20% $C > B > D > A$
15% $D > C > A > B$

Design rules: *Instant Runoff Voting* (IRV/STV)

Instant Runoff Voting (IRV): Repeatedly eliminate the candidate with the fewest 1st-place votes until one candidate gets 50% of the votes.

$$40\% \quad A > B > C$$

$$25\%$$
 B > C > A

$$20\%$$
 $C > B > A$

15%
$$C > A > B$$

Design rules: *Instant Runoff Voting* (IRV/STV)

Instant Runoff Voting (IRV): Repeatedly eliminate the candidate with the fewest 1st-place votes until one candidate gets 50% of the votes.

$$40\% \quad A > C$$

25%
$$C > A$$

$$20\%$$
 $C > A$

$$15\%$$
 $C > A$

Check the **normative properties** (the *axioms*).

Axiom: Reinforcement

If a candidate wins in a profile P_1 and in a profile P_2 , it also wins in the profile P_1+P_2 .

Characterization Theorem (Smith and Young, 1973): Scoring Rules are the only voting rules that satisfy reinforcement, neutrality, and anonymity.

Check the **normative properties** (the *axioms*).

Axiom: Strategyproofness

A voter cannot obtain a better winner by misreporting their preferences.

$$4 \times A > B > D > C$$

$$3 \times B > C > A > D$$

$$2 \times C > B > D > A$$

$$2 \times D > C > A > B$$

$$2 \times D > C > A > B$$

$$2 \times D > C > A > B$$

The plurality winner is A.

The plurality winner is now B.

Axiomatic analysis

Check the **normative properties** (the *axioms*).

Axiom: Strategyproofness

A voter cannot obtain a better winner by misreporting their preferences.

Impossibility Theorem (Gibbard and Satterthwaite, 1973): There exists no rule that satisfies strategyproofness, resoluteness, non-imposition and non-dictatorship.

Run simulations with the voting rules.

We need preference data for the simulations:

- Generate **synthetic data** from probabilistic models.
- Use data from **online libraries** of datasets (e.g., Preflib).
- Design **voting experiments** and collect data.

3. Proportional Parliementary elections with Threshold

Voting systems for parliamentary elections

Voters vote for one party.

Seats are allocated to parties proportionally to their scores.

Voters vote for one party.

Seats are allocated to parties proportionally to their scores.

Problem: possible political fragmentation (many parties get a seat).

Many countries impose an **electoral threshold** to reduce political fragmentation.

- → Some votes are "lost": D and E supporters have no influence on the seat distribution.
- This incentivizes forms of tactical voting.

The "lost" votes

		Threshold	"Lost" votes
* * * * * * *	2019 election of the French representative to the EU Parliament.	5%	20%
	2025 election of the <i>Bundestag</i> members.	5%	14% increasing in recent decades
C*	2002 election of the <i>Turkish</i> Parliament members.	10%	46%

We could let voters **indicate a second choice** to be used in case their first choice does not reach the threshold.

We could ask voters to rank **two parties**

- 1 Party B
- 2 Party D

We could even ask for a truncated ranking

- 1 Party B
- 2 Party D
- 3 Party A
- 4 Party C

We could ask voters to rank **two parties**

- 1 Party B
- 2 Party D

We could even ask for a truncated ranking

- 1 Party B
- 2 Party D
- 3 Party A
- 4 Party C

Question: how to decide which parties are "above the threshold"?

43% A 43% B 4% C > D 2% D > C

5% threshold

We have:

- Sets of voters $V = \{1, 2, ..., n\}$ and parties $C = \{p_1, ..., p_m\}$.
- A preference profile $P = (\succ_1, ..., \succ_n)$ of truncated rankings of voters over parties.
- A given **threshold** τ (absolute number of voters).

We want:

- A set of selected parties $S \subseteq C$, called the **outcome**.
- Voters are represented by their most-preferred party in S (if any).
- An outcome S is **feasible** if every party represents at least τ voters.
- We assume that parties in S get a **number of seats proportional** to the **share** of voters they represent.

$$6 \times A > B > D > C$$
 $4 \times B > C > E > A > D$
 $3 \times C > B$
 $3 \times D > E > B > A > C$

- Threshold $\tau = 5$.

 $2 \times C > A > E$

Outcome $\{A\}$ is feasible.

$$6 \times A > B > D > C$$

$$4 \times B > C > E > A > D$$

$$3 \times C > B$$

$$3 \times D > E > B > A > C$$

$$2 \times C > A > E$$

- Threshold $\tau = 5$.

Outcome $\{A\}$ is feasible.

Outcome $\{E\}$ is feasible.

$$6 \times A > B > D > C$$

$$4 \times B > C > E > A > D$$

$$3 \times C > B$$

$$3 \times D > E > B > A > C$$

$$2 \times C > A > E$$

- Threshold $\tau = 5$.

Outcome $\{A\}$ is feasible.

Outcome $\{E\}$ is feasible.

Outcome $\{A, C\}$ is feasible.

$$6 \times A > B > D > C$$

$$\mathbf{4} \times \mathbf{B} > C > E > A > D$$

$$3 \times C > B$$

$$3 \times D > E > B > A > C$$

$$2 \times C > A > E$$

- Threshold $\tau = 5$.

Outcome $\{A\}$ is feasible.

Outcome $\{E\}$ is feasible.

Outcome $\{A, C\}$ is feasible.

Outcome $\{A, B, C\}$ is feasible.

$$6 \times A > B > D > C$$

$$\mathbf{4} \times \mathbf{B} > C > E > A > D$$

$$3 \times C > B$$

$$3 \times D > E > B > A > C$$

$$2 \times C > A > E$$

- Threshold $\tau = 5$.

Outcome $\{A\}$ is feasible.

Outcome $\{E\}$ is feasible.

Outcome $\{A, C\}$ is feasible.

Outcome $\{A, B, C\}$ is feasible.

Outcome $\{B, D\}$ is not feasible.

Generalization of single-winner voting

If $\tau > n/2$ and with full rankings, this corresponds to the **single-winner voting model** (if we additionally force a non-empty outcome).

(This is because when $\tau > n/2$, only one candidate can be part of the outcome since each candidate in the outcome needs to represent more than τ voters)

Summary of the problem

Profile *P*

 \bullet Threshold τ

Party Selection Rule f

Feasible Outcome

$$S \subseteq C$$

4. Party Selection Rules

Rule: Direct Winners Only (DO)

The selected parties are all those which receive more first-place votes than required by the threshold.

Rule: Direct Winners Only (DO)

The selected parties are all those which receive more first-place votes than required by the threshold.

Rule: Direct Winners Only (DO)

The selected parties are all those which receive more first-place votes than required by the threshold.

35%
$$A > C$$
 3% $D > E > F > C$

30% B 3% $E > F > A$ A

20% $C > E > A$ 2% $F > E > D$

6% $C > A > B$ 1% $D > F > B$

35%
$$A > C$$
 3% $D > E > F > C$

30% B 3% $E > F > A$

5% threshold

6% $C > A > B$ 1% $D > F > B$
 $A B C D E F$

35%
$$A > C$$
 3% $D > E > F > C$
30% B 3% $E > F > A$
20% $C > E > A$ 2% $F > E > D$
6% $C > A > B$ 1% $D > F > B$

35%
$$A > C$$
 3% $D > E > F > C$
30% B 3% $E > F > A$
20% $C > E > A$ 2% $F > E > D$
6% $C > A > B$ 1% $D > F > B$

35%
$$A > C$$
 3% $D > E > F > C$

30% B 3% $E > F > A$

20% $C > E > A$ 2% $F > E > D$

6% $C > A > B$ 1% $D > F > B$

Rule: Maximum Representation (MaxR)

Return the feasible outcome that maximizes the number of voters that are **represented**.

Rule: Maximum Plurality (MaxP)

Return the feasible outcome that maximizes the number of voters that are **represented by their first choice**.

Computational Complexity

Theorem: The outcome of DO, STV and GP can be computed in polynomial time.

Theorem: The problem of computing the outcome of MaxR and MaxP is **NP-hard.**

(proof by reduction to the independent set problem)

5. Axiomatic Analysis

Inclusion of Direct Winners

Axiom: Inclusion of Direct Winners

If τ voters or more rank a party x on top of their rankings, this party should be selected.

Representation of Solid Coalitions

Axiom: Representation of solid coalitions

If τ voters or more rank a set of parties T on top of their rankings, at least one of these parties should be selected.

Inspired by Proportionality for Solid Coalitions [Dummet 94]

Party E or F should be part of the outcome. **Axiom:** Threshold Monotonicity

If a party is selected for threshold τ , then it is also selected for threshold $\tau' < \tau$.

Axiom: Ind. of Definitely Losing Parties SDO STV SGP MaxP MaxR

Once some parties are losing at some threshold τ , then for all larger thresholds au' > au, the rule should behave as if none of the losing parties had been available.

Characterization Theorem : STV is the only party selection rule that satisfies inclusion of direct winners and independence of definitely losing parties.

Axiom: Reinforcement for Winning Parties

If a party is selected for profile P_1 with threshold τ_1 and for profile P_2 with threshold τ_2 , then it should be selected for profile $P_1 + P_2$ with threshold $\tau_1 + \tau_2$.

DO

Characterization Theorem : DO is the only party selection rule that satisfies inclusion of direct winners and reinforcement for winning parties.

Axiom: Representative-strategyproofness

Voters cannot cause a party to be selected that they prefer to all currently selected parties by misreporting their preferences.

Axiom: Share-strategyproofness

Voters cannot cause a party to be selected that they prefer to all currently selected parties by misreporting their preferences *OR* increase the share of voters represented by their most-preferred selected party.

Incentive Issues

No hope for strategyproofness in general.

(Gibbard-Satterthwaite impossibility result applies since single-winner voting is a special case of our model)

Say that a party is (all with respect to a voter i)...

- ...Safe if it is always selected no matter how i votes.
- ...Risky if it might or might not be selected depending on how i votes.
- ...Out if it is always not selected no matter how *i* votes.

 $\ll au$ votes $\sim au$ votes $\gg au$ votes $\sim au$ votes $\sim au$ votes $\sim au$ votes $\sim au$ votes

Proposition : GP, MaxP and MaxR satisfy representative-strategyproofness when there is *at most one risky* party from the perspective of each voter. (DO and STV do not.)

 $<\!\!< au ext{ votes} > au ext{ votes} > au ext{ votes}$

Proposition: DO satisfies share-strategyproofness when every voter has a *safe party as one of their two most-preferred* parties. (GP, STV, MaxP and MaxR do not.)

In the (current) uninominal system, voters are incentivized to vote for their favorite party among the ones that will be selected:

32%
$$A > C$$
 32% $C > D > B$

 32% B
 4% $D > A$

 32% B
 32% B

 32% B
 4% $A > D$

 Represented

Proposition: DO and **GP** satisfy share-strategyproofness under the restriction that voters can only misreport by promoting their most-preferred *selected* party into first place. (STV, MaxP and MaxR do not)

Summary

	DO	STV	GP	MaxP	MaxR
Set-maximality				Ø	
Inclusion of direct winners					
Representation of solid coalitions					
Threshold monotonicity					
Ind. of definitely losing parties					
Ind. of clones					
Reinforcement for winning parties					
Monotonicity					
Rep-SP (one risky party)					
Share-SP (safe 1 st or 2 nd)					
Share-SP (rep. ranked 1st)					

6. Empirical Analysis

Context of the experiment

To collect appropriate preference data, we **ran a voting experiment** during the 2024 election of the French representative to the EU parliament.

Candidate parties: 38

Threshold: 5%

Parties above the threshold: 7

Lost votes: 12.1%

The experimental setup

- Explanation of the issues caused by the threshold.
- Presentation of the candidate lists.
- Vote with alternative voting methods.
- 4 Questionnaire.

Fig. Screenshot of the website of the experiment conducted during the 2024 election of the French representative to the EU Parliament.

Two samples of participants

- 1
- Self-selected sample

- 3 046 participants in a week.
- Recruited through social media, unpaid.
- Overrepresentation of leftwing, young and educated people.

2 Representative sample

- 1 000 participants.
- Recruited via a polling institute and paid a fixed amount to participate.
- Representative of the French population.

We assign weights to the voters to reduce the biases: weights are selected based on the vote of the participant at the actual election, to match the share of votes received by each party.

FOAM Seminar – September 11th, 2025

Share of voters that put a "small" party first in their ranking

- 2 Representative sample
- Share of unrepresented voters in the actual election
- Share of unrepresented voters with ranking-based rules

- Number of parties receiving a seat in the actual election
- Number of parties receiving a sear with ranking-based rules

4th Observation: we can ask for short rankings

Share of unrepresented voters if all rankings are truncated to rank k (x-axis).

Share of unrepresented voters with different threshold values and with random noise added to the preferences (self-selected sample).

Opinion of the participants on the different systems

Which system do you think is better suited for the election of your representatives to the EU parliament?

Conclusion

Conclusion

We axiomatically and empirically studied rules for electing parliaments with electoral thresholds.

Main takeaway: We can significantly increase representativeness by allowing voters to **rank** parties.

- STV and GP leave fewer voters unrepresented than DO.
- DO and GP have stronger strategyproofness guarantees than STV.
- STV satisfies independence of clones and represents solid coalitions.

Thanks for your attention! Questions?