Reallocating Wasted Votes in Proportional Parliamentary Elections with Thresholds

Théo Delemazure

ILLC, University of Amsterdam

Rupert Freeman

Darden School of Business

Jérôme Lang

LAMSADE, Paris Dauphine University Jean-François Laslier

Paris School of Economics

Dominik Peters

LAMSADE, Paris Dauphine University

Voting systems for parliamentary elections

Voters vote for one party.

Seats are allocated to parties proportionally to their scores.

Voters vote for one party.

Seats are allocated to parties proportionally to their scores.

Problem: possible political fragmentation (many parties get a seat).

Many countries impose and **electoral threshold** to reduce political fragmentation.

- → Some votes are "lost": D and E supporters have no influence on the seat distribution.
- This incentivizes forms of tactical voting.

The "lost" votes

		Threshold	"Lost" votes
* * * * * * * *	2019 election of the French representative to the EU Parliament.	5%	20%
	2025 election of the <i>Bundestag</i> members.	5%	14% increasing in recent decades
C*	2002 election of the <i>Turkish</i> Parliament members.	10%	46%

Idea: a replacement vote

We could let voters **indicate a second choice** to be used in case their first choice does not reach the threshold.

We could ask voters to rank **two parties**

- 1 Party B
- 2 Party D

We could even ask for a truncated ranking

- 1 Party B
- 2 Party D
- 3 Party A
- 4 Party C

We could ask voters to rank **two parties**

- 1 Party B
- 2 Party D

We could even ask for a truncated ranking

- 1 Party B
- 2 Party D
- 3 Party A
- 4 Party C

Question: how to decide which parties are "above the threshold"?

47% A 47% B 4% C > D 2% D > C

5% threshold

We have:

- Sets of voters $V = \{1, 2, ..., n\}$ and parties $C = \{p_1, ..., p_m\}$.

The formal model

- A preference profile $P = (\succ_1, ..., \succ_n)$ of truncated rankings of voters over parties.
- A given threshold τ (absolute number of voters).

We want:

- A set of selected parties $S \subseteq C$, called the **outcome**.
- Voters are **represented** by their most-preferred party in S (if any).
- An outcome S is **feasible** if every party represents at least τ voters.

Party Selection Rules

Rule: Direct Winners Only (DO)

The selected parties are all those which receive more first-place votes than required by the threshold.

Rule: Direct Winners Only (DO)

The selected parties are all those which receive more first-place votes than required by the threshold.

Rule: Direct Winners Only (DO)

The selected parties are all those which receive more first-place votes than required by the threshold.

35%
$$A > C$$
 3% $D > E > F > C$
30% B 3% $E > F > A$
20% $C > E > A$ 2% $F > E > D$
6% $C > A > B$ 1% $D > F > B$

35%
$$A > C$$
 3% $D > E > F > C$
30% B 3% $E > F > A$
20% $C > E > A$ 2% $F > E > D$
6% $C > A > B$ 1% $D > F > B$

35%
$$A > C$$
 3% $D > E > F > C$
30% B 3% $E > F > A$
20% $C > E > A$ 2% $F > E > D$
6% $C > A > B$ 1% $D > F > B$

Axiomatic Analysis

Inclusion of Direct Winners

Axiom: Inclusion of Direct Winners

If τ voters or more rank a party x on top of their rankings, this party should be selected.

Representation of Solid Coalitions

Axiom: Representation of solid coalitions

If τ voters or more rank a set of parties T on top of their rankings, at least one of these parties should be selected.

⊗ GP

Inspired by Proportionality for Solid Coalitions [Dummet 94]

35%
$$A > C$$
 4% $D > E > F$

30% B 3% $E > F > A$

26% $C > E > A$ 2% $F > E > D$

= 5%

Party E or F should be part of the outcome. **Axiom:** Threshold Monotonicity

DO

If a party is selected for threshold τ , then it is also selected for threshold $\tau' < \tau$.

Axiom: Independence of Definitely Losing Parties

Once some parties are losing at some threshold τ , then for all larger thresholds $\tau' > \tau$, the rule should behave as if none of the losing parties had been available.

Characterization Theorem : STV is the only party selection rule that satisfies inclusion of direct winners and independence of definitely losing parties.

Axiom: Reinforcement for Winning Parties

DO

If a party is selected for profile P_1 with threshold τ_1 and for profile P_2 with threshold τ_2 , then it should be selected for profile $P_1 + P_2$ with threshold $\tau_1 + \tau_2$.

Characterization Theorem : DO is the only party selection rule that satisfies inclusion of direct winners and reinforcement for winning parties.

Axiom: Representative-strategyproofness

Voters cannot cause a party to be selected that they prefer to all currently selected parties by misreporting their preferences.

No hope for strategyproofness in general (Gibbard-Satterthwaite applies).

Say that a party is (all with respect to a voter i)...

- ...**Safe** if it is always selected no matter how *i* votes.
- ...Risky if it might or might not be selected depending on how i votes.
- ...Out if it is always not selected no matter how *i* votes.

 $\ll \tau$ votes

Out

 $\sim \tau$ votes

Risky

 $\gg \tau$ votes

Safe

Say that a party is (all with respect to a voter i)...

- ...**Safe** if it is always selected no matter how *i* votes.
- ...Risky if it might or might not be selected depending on how i votes.
- ...Out if it is always not selected no matter how *i* votes.

$\ll au$ votes $\sim au$ votes $\gg au$ votes $\sim au$ votes

1 maximum

Proposition: GP satisfies representative-strategyproofness when there is *at most one risky* party from the perspective of each voter. (DO and STV do not.)

Axiomatic Analysis

Summary

	DO	STV	GP
Set-maximality			
Inclusion of direct winners			
Representation of solid coalitions			
Threshold monotonicity			
Ind. of definitely losing parties			
Ind. of clones			
Reinforcement for winning parties			
Monotonicity			
Rep-SP (one risky party)			
Share-SP (safe 1 st or 2 nd)			
Share-SP (rep. ranked 1st)			

Empirical Analysis

Context of the experiment

To collect appropriate preference data, we **ran a voting experiment** during the 2024 election of the French representative to the EU parliament.

Candidate parties: 38

Threshold: 5%

Parties above the threshold: 7

Lost votes: 12.1%

The experimental setup

- Explanation of the issues caused by the threshold.
- Presentation of the candidate lists.
- Vote with alternative voting methods.
- 4 Questionnaire.

Fig. Screenshot of the website of the experiment conducted during the 2024 election of the French representative to the EU Parliament.

Two samples of participants

1 Self-selected sample

- 3 046 participants in a week.
- Recruited through social media, unpaid.
- Overrepresentation of leftwing, young and educated people.

2 Representative sample

- 1 000 participants.
- Recruited via a polling institute and paid a fixed amount to participate.
- Representative of the French population.

1 Self-selected sample

- 2 Representative sample
- Share of unrepresented voters in the actual election
- Share of unrepresented voters with ranking-based rules

- Number of parties receiving a seat in the actual election
- Number of parties receiving a sear with ranking-based rules

We still reduce the number of lost votes if we impose short rankings

Conclusion

Conclusion

We axiomatically and empirically studied rules for electing parliaments with electoral thresholds.

Main takeaway: We can significantly increase representativeness by allowing voters to **rank** parties.

- STV and GP leave fewer voters unrepresented than DO.
- DO and GP have stronger strategyproofness guarantees than STV.
- STV satisfies independence of clones and represents solid coalitions.

Thanks for your attention! Questions?