Measuring a Priori Voting Power

Taking Delegations Seriously

Rachael Colley Théo Delemazure Hugo Gilbert

GT TADJ - June 30th 2023

A voting game

Board of directors, each member has a voting weight:

	Ann	Bobby	Carol	Dan	Eve	Finn	Total
Weight	4	1	4	4	2	2	17
	+	+	-	+	+	+	13

Rule: a vote is successful if the sum of weights of voters in favor (+) is $\geq q=12$.

A voting game

Board of directors, each member has a voting weight:

	Ann	Bobby	Carol	Dan	Eve	Finn	Total
Weight	$\mathbf{4}$	$\mathbf{1}$	4	4	2	2	17
	+	+	-	+	+	+	13
	+	-	+	-	+	-	10

Rule: a vote is successful if the sum of weights of voters in favor (+) is $\geq q=12$.

A voting game

Board of directors, each member has a voting weight:

	Ann	Bobby	Carol	Dan	Eve	Finn	Total
Weight	4	1	4	4	2	2	17
	+	+	-	+	+	+	13
	+	-	+	-	+	-	10

Rule: a vote is successful if the sum of weights of voters in favor $(+)$ is $\geq q=12$.

Bobby never has any power over the outcome of the vote.

A voting game

European Council of Ministers (1958), each member has a voting weight:

France Luxembourg Germany Italy Belgium Netherlands

Weight	4	1	4	4	2	2

Rule: a vote is successful if the sum of weights of voters in favor $(+)$ is $\geq q=12$.

Luxembourg never has any power over the outcome of the vote.

How to measure the voting power?

- P-power: [Shapley and Shubik, 1954].
- I-power: [Penrose, 1946, Banzhaf III, 1964, Coleman, 1971]

How to measure the voting power?

- P-power: [Shapley and Shubik, 1954].
- I-power: [Penrose, 1946, Banzhaf III, 1964, Coleman, 1971]

More formally

Binary partition

A binary partition B is a map on V (voters) s.t. $B(i) \in\{-1,+1\}$ for all $i \in V$.

$$
\begin{array}{ccccccc}
\text { Ann } & \text { Bobby } & \text { Carol } & \text { Dan } & \text { Eve } & \text { Finn } \\
\hline B+{ }^{+} & - & + & - & + & + \\
B^{-}=\{\text {Bobby, } & \text { Dan }\} \text { and } B^{+}=\{\text {Ann, Carol, Eve, } & \text { Finn }\}
\end{array}
$$

More formally

Binary partition

A binary partition B is a map on V (voters) s.t. $B(i) \in\{-1,+1\}$ for all $i \in V$.

Binary voting rule

A binary voting rule W associates to every binary partition B an outcome $W(B) \in\{-1,+1\}$.

	Ann	Bobby	Carol	Dan	Eve	Finn	$W(B)$
B	+	-	+	-	+	+	+1

More formally

Binary partition

A binary partition B is a map on V (voters) s.t. $B(i) \in\{-1,+1\}$ for all $i \in V$.

Binary voting rule

A binary voting rule W associates to every binary partition B an outcome $W(B) \in\{-1,+1\}$.

	Ann	Bobby	Carol	Dan	Eve	Finn	$W(B)$
B	+	-	+	-	+	+	+1
$B^{\prime} \geq B$	+	+	+	-	+	+	+1

More formally

Binary partition

A binary partition B is a map on V (voters) s.t. $B(i) \in\{-1,+1\}$ for all $i \in V$.
Binary voting rule
A binary voting rule W associates to every binary partition B an outcome $W(B) \in\{-1,+1\}$.

	Ann	Bobby	Carol	Dan	Eve	Finn	$W(B)$
B	+	-	+	-	+	+	+1
$B^{\prime} \geq B$	+	+	+	-	+	+	+1
B_{-}	-	-	-	-	-	-	-1
B_{+}	+	+	+	+	+	+	+1

More formally

Binary partition

A binary partition B is a map on V (voters) s.t. $B(i) \in\{-1,+1\}$ for all $i \in V$.

Binary voting rule

A binary voting rule W associates to every binary partition B an outcome $W(B) \in\{-1,+1\}$.

Weighted voting rule (= Weighted Voting Game)

A weighted voting rule with weights $w: V \rightarrow \mathbb{N}$ and a quota $q \in \mathbb{N}$ is such that $W(B)=+1$ if and only if $\sum_{i \in B^{+}} W(i) \geq q$.

	Ann	Bobby	Carol	Dan	Eve	Finn	Total	$W(B)$
Weights	4	1	4	4	2	2	17	
B	+	-	+	-	+	+	12	+1

The Penrose-Banzhaf measure is the probability of a voter being able to alter the election's outcome given the following probabilistic model: all binary partitions are equally likely to occur.

Penrose-Banzhaf measure

Penrose-Banzhaf measure

Given a binary voting rule W, the Penrose-Banzhaf measure of voter $i \in V$ is defined as:

$$
\mathcal{M}_{i}(W)=\sum_{B \in \mathcal{B}} \mathbb{P}(B) \frac{W\left(B_{i+}\right)-W\left(B_{i-}\right)}{2}
$$

where $\mathbb{P}(B)=1 / 2^{n}$ for all partitions B.

Ann	Bobby	Carol	Dan	Eve	Finn	$W(B)$	
B	+	-	-	$?$	+	+	

Penrose-Banzhaf measure

Penrose-Banzhaf measure

Given a binary voting rule W, the Penrose-Banzhaf measure of voter $i \in V$ is defined as:

$$
\mathcal{M}_{i}(W)=\sum_{B \in \mathcal{B}} \mathbb{P}(B) \frac{W\left(B_{i+}\right)-W\left(B_{i-}\right)}{2}
$$

where $\mathbb{P}(B)=1 / 2^{n}$ for all partitions B.

Ann	Bobby	Carol	Dan	Eve	Finn	$W(B)$	
B	+	-	-	$?$	+	+	
$B_{D^{-}}$	+	-	-	-	+	+	-1

Penrose-Banzhaf measure

Penrose-Banzhaf measure

Given a binary voting rule W, the Penrose-Banzhaf measure of voter $i \in V$ is defined as:

$$
\mathcal{M}_{i}(W)=\sum_{B \in \mathcal{B}} \mathbb{P}(B) \frac{W\left(B_{i+}\right)-W\left(B_{i-}\right)}{2}
$$

where $\mathbb{P}(B)=1 / 2^{n}$ for all partitions B.

	Ann	Bobby	Carol	Dan	Eve	Finn	$W(B)$
B	+	-	-	$?$	+	+	
$B_{D^{-}}$	+	-	-	-	+	+	-1
$B_{D^{+}}$	+	-	-	+	+	+	+1

Penrose-Banzhaf measure

Penrose-Banzhaf measure

Given a binary voting rule W, the Penrose-Banzhaf measure of voter $i \in V$ is defined as:

$$
\mathcal{M}_{i}(W)=\sum_{B \in \mathcal{B}} \mathbb{P}(B) \frac{W\left(B_{i^{+}}\right)-W\left(B_{i^{-}}\right)}{2}
$$

where $\mathbb{P}(B)=1 / 2^{n}$ for all partitions B.

Complexity

- \#P-hard in general [Prasad and Kelly, 1990],
- In WVGs, it can be computed by a pseudo-polynomial algorithm that runs in polynomial time w.r.t. $|V|$ and max $_{i \in V} w(i)$ [Matsui and Matsui, 2000].

A voting game

	Ann	Bobby	Carol	Dan	Eve	Finn
Weight	4	1	4	4	2	2
$\mathcal{M}_{i}(W)$	0.3125	0	0.3125	0.3125	0.1875	0.1875

Rule: a vote is successful if the sum of weights of voters in favor $(+)$ is $\geq q=12$.

Liquid Democracy

	Ann	Bobby	Carol	Dan	Eve	Finn	Total
Weight	4	1	4	4	2	2	17

Rule: a vote is successful if the sum of weights of voters in favor $(+)$ is $\geq q=12$.

Liquid Democracy

Rule: a vote is successful if the sum of weights of voters in favor $(+)$ is $\geq q=12$.

Liquid Democracy

Rule: a vote is successful if the sum of weights of voters in favor $(+)$ is $\geq q=12$.

Liquid Democracy

Dan (-)

	Ann	Bobby	Carol	Dan	Eve	Finn	Total
Weight	4	1	4	4	2	2	17
Ballots	+	-	A	-	B	C	
Votes	+	-	+	-	-	+	10

Rule: a vote is successful if the sum of weights of voters in favor $(+)$ is $\geq q=12$.

Motivation behind delegations

Voting models using delegations are getting increasing attention, both in theoretical works and in practice:

- In Proxy Voting (PV), there is a fixed set of representatives to whom voters can delegate their votes.
- In Liquid Democracy (LD), every voter can either vote directly or delegate its voting power to someone else.

Formal definition

We assume that we have a graph structure $G=(V, E)$ in which each voter $v \in V$ can vote for, against or delegate to a neighbour.

G-delegation partition

A G-delegation partition D is a map on V (voters) s.t. $D(i) \in\{-1,+1\} \cup \mathrm{NB}_{\text {out }}(i)$.
$N B_{\text {out }}(i)$: set of out-neighbours of $i \in V$.

Ann	Bobby	Carol	Dan	Eve	Finn
D	+	+	A	-	B

Formal definition

We assume that we have a graph structure $G=(V, E)$ in which each voter $v \in V$ can vote for, against or delegate to a neighbour.

G-delegation partition

A G-delegation partition D is a map on V (voters) s.t. $D(i) \in\{-1,+1\} \cup \mathrm{NB}_{\text {out }}(i)$.

Direct vote partition

A direct vote partition T is a map on V s.t. $T(i) \in\{-1,0,+1\}$.

Ann Bobby Carol Dan Eve Finn

D
A
B C

Formal definition

We assume that we have a graph structure $G=(V, E)$ in which each voter $v \in V$ can vote for, against or delegate to a neighbour.

G-delegation partition

A G-delegation partition D is a map on V (voters) s.t. $D(i) \in\{-1,+1\} \cup \mathrm{NB}_{\text {out }}(i)$.

Direct vote partition

A direct vote partition T is a map on V s.t. $T(i) \in\{-1,0,+1\}$.
Ann Bobby Carol Dan Eve Finn

D	+	+	A	-	B	C
T_{D}	+	+	+	-	+	+

$\Rightarrow A$ G-delegation partition D naturally induces a direct-vote partition T_{D}.

Formal definition

We assume that we have a graph structure $G=(V, E)$ in which each voter $v \in V$ can vote for, against or delegate to a neighbour.

G-delegation partition

A G-delegation partition D is a map on V (voters) s.t. $D(i) \in\{-1,+1\} \cup \mathrm{NB}_{\text {out }}(i)$.

Direct vote partition

A direct vote partition T is a map on V s.t. $T(i) \in\{-1,0,+1\}$.
Ann Bobby Carol Dan Eve Finn

D	+	+	F	-	B
T_{D}	+	+	0	-	+

$\Rightarrow A$ G-delegation partition D naturally induces a direct-vote partition T_{D}.

Liquid Democracy (LD) Penrose-Banzhaf measure

Given a digraph $G=(V, E)$ and a ternary voting rule W, the LD Penrose-Banzhaf measure of voter $i \in V$ is defined as:

$$
\mathcal{M}_{i}^{l d}(W, G)=\sum_{D \in \mathcal{D}} \mathbb{P}(D) \frac{W\left(T_{D_{i}+}\right)-W\left(T_{D_{i}-}\right)}{2},
$$

where $\mathbb{P}(D)$ is the probability of the G-delegation partition D occurring.

- Probability to delegate $p_{d}^{i} \in[0,1]$ and to vote $p_{v}^{i}=1-p_{d}^{i}$.
- If vote: probability to vote for/against: $p_{+}=p_{-}=1 / 2$.
- If delegate: probability to delegate to $j \in \mathrm{NB}_{\text {out }}(i): 1 /\left|\mathrm{NB}_{\text {out }}(i)\right|$.

Liquid Democracy (LD) Penrose-Banzhaf measure

Given a digraph $G=(V, E)$ and a ternary voting rule W, the LD Penrose-Banzhaf measure of voter $i \in V$ is defined as:

$$
\mathcal{M}_{i}^{l d}(W, G)=\sum_{D \in \mathcal{D}} \mathbb{P}(D) \frac{W\left(T_{D_{i+}}\right)-W\left(T_{D_{i}-}\right)}{2}
$$

where $\mathbb{P}(D)$ is the probability of the G-delegation partition D occurring.

- Probability to delegate $p_{d}^{i} \in[0,1]$ and to vote $p_{v}^{i}=1-p_{d}^{i}$.
- If vote: probability to vote for/against: $p_{+}=p_{-}=1 / 2$.
- If delegate: probability to delegate to $j \in \mathrm{NB}_{\text {out }}(i): 1 /\left|\mathrm{NB}_{\text {out }}(i)\right|$.

If $p_{d}^{i}=0$ for every voter $i \in N$, we have the classic Penrose-Banzhaf index.

Complexity and computation

Complexity

Computing the LD Penrose-Banzhaf:

- \#P-hard, even for Weighted Voting Games (WVG).

Complexity and computation

Complexity

Computing the LD Penrose-Banzhaf:

- \#P-hard, even for Weighted Voting Games (WVG).
- For bipartite and complete graphs, it can be computed by a pseudo-polynomial algorithm that runs in polynomial time w.r.t. |V| and $\max _{i \in V} w(i)$.

Proxy Voting

In Proxy Voting (PV), we have delegatees $i \in V_{d}$ (proxies) and delegators $i \in V_{V}$.

Complexity

The LD Penrose-Banzhaf can be computed by a pseudo-polynomial algorithm that runs in polynomial time w.r.t. $|V|$ and $m^{2} x_{i \in V} w(i)$.

Proxy Voting: Experiments

Figure 1: 100 voters, WVG with all weights equal to 1 and $q=50 \%$.

The lower the number of proxies, the more unequal the voting power of the voters.

Liquid Democracy

In Liquid Democracy, any voter can delegate to any other voter, or vote themselves.

Complexity

The LD Penrose-Banzhaf can be computed by a pseudo-polynomial algorithm that runs in polynomial time w.r.t. $|V|$ and $\max _{i \in V} w(i)$.

Liquid Democracy: experiments

Figure 2: Penrose-Banzhaf index of the voters with probability to delegate $p_{d} .100$ voters, WVG with 50 (resp. 30,20) voters with weights equal to 1 (resp. 2,5) and $q=50 \%$.

When the probability to delegate p_{d} gets higher, the voting weight has less influence on the voting power.

Criticality distribution and degree distribution

$$
\text { Random graph } G(n, p)
$$

- Undirected.
- Every edge has probability p to exist.

Figure 3: Distribution of the criticality of the voters in the network, from the highest degree to the smallest criticality

Criticality distribution and degree distribution

Figure 3: Distribution of the criticality of the voters in the network, from the highest criticality to the smallest criticality

Preferential attachment model

- [Barabási and Albert, 1999].
- Undirected.
- Voters join the network one by one and are more likely to be linked to already popular voters.
- "Rich get richer"

Criticality distribution and degree distribution

Small world model

- [Watts and Strogatz, 1998] .
- Undirected.
- Voters on a circle and linked in priority to their neighbours on the circle.

Figure 3: Distribution of the criticality of the voters in the network, from the highest criticality to the smallest criticality

Criticality distribution and degree distribution

Figure 3: Distribution of the criticality of the voters in the network, from the highest criticality to the smallest criticality

Spatial models

- Directed.
- Voters randomly placed on a 2D-plane (Uniform or Gaussian distribution).
- Voters have a directed edge towards their k nearest neighbours.

Criticality distribution and degree distribution

Figure 3: Distribution of the criticality of the voters in the network, from the highest criticality to the smallest criticality
k-layers models

example with $k=3$ layers.

Criticality distribution and degree distribution

Figure 3: Distribution of the criticality of the voters in the network, from the highest criticality to the smallest criticality

Figure 4: Distribution of the degree of the voters in the network, from the highest degree to the smallest degree

Conclusion

This paper continues the tradition of extending the notion of a priori voting power to new voting models.

- We have introduced the Liquid Democracy Penrose-Banzhaf measure to evaluate how critical voters are in deciding the outcome of an election where delegations play a key role.
- Complexity and hardness results, and pseudo-polynomial algorithms for PV and LD.
- Experimental analysis of the criticality in various networks and with varying parameters.

Conclusion

Further research directions:

- Other delegations models (ranked delegations, including abstention, etc.).
- Finding conditions (like adding or removing neighbours) that affects the power measure.
- Analysing real data, using real networks for instance.

Thanks for your attention!

Questions?

Bibliography

围 Banzhaf III，J．F．（1964）．
Weighted voting doesn＇t work：A mathematical analysis．
Rutgers L．Rev．，19：317．
圊 Barabási，A．－L．and Albert，R．（1999）．
Emergence of scaling in random networks．
Science，286（5439）：509－512．
围 Coleman，J．S．（1971）．
Control of collectivities and the power of a collectivity to act．
Social choice，pages 269－300．
圊 Matsui，T．and Matsui，Y．（2000）．
A survey of algorithms for calculating power indices of weighted majority games．
Journal of the Operations Research Society of Japan，43（1）：71－86．

