Measuring a Priori Voting Power

Taking Delegations Seriously

Rachael Colley Théo Delemazure Hugo Gilbert

GT TADJ - June 30th 2023

Board of directors, each member has a voting weight:

	Ann	Bobby	Carol	Dan	Eve	Finn	Total
Weight	4	1	4	4	2	2	17
	+	+	-	+	+	+	13

Board of directors, each member has a voting weight:

	Ann	Bobby	Carol	Dan	Eve	Finn	Total
Weight	4	1	4	4	2	2	17
	+	+	-	+	+	+	13
	+	-	+	-	+	-	10

Board of directors, each member has a voting weight:

	Ann	Bobby	Carol	Dan	Eve	Finn	Total
Weight	4	1	4	4	2	2	17
	+	+	-	+	+	+	13
	+	-	+	-	+	-	10

Rule: a vote is successful if the sum of weights of voters in favor (+) is $\geq q = 12$.

Bobby never has any power over the outcome of the vote.

European Council of Ministers (1958), each member has a voting weight:

	France	Luxembourg	Germany	Italy	Belgium	Netherlands
Weight	4	1	4	4	2	2

Rule: a vote is successful if the sum of weights of voters in favor (+) is $\geq q = 12$.

Luxembourg never has any power over the outcome of the vote.

How to measure the voting power?

- P-power: [Shapley and Shubik, 1954].
- · I-power: [Penrose, 1946, Banzhaf III, 1964, Coleman, 1971]

How to measure the voting power?

- P-power: [Shapley and Shubik, 1954].
- · I-power: [Penrose, 1946, Banzhaf III, 1964, Coleman, 1971]

Binary partition

A binary partition B is a map on V (voters) s.t. $B(i) \in \{-1, +1\}$ for all $i \in V$.

	Ann	Bobby	Carol	Dan	Eve	Finn
В	+	-	+	-	+	+

 $B^- = \{\text{Bobby}, \text{Dan}\} \text{ and } B^+ = \{\text{Ann}, \text{Carol}, \text{Eve}, \text{Finn}\}$

Binary partition

A binary partition B is a map on V (voters) s.t. $B(i) \in \{-1, +1\}$ for all $i \in V$.

Binary voting rule A binary voting rule W associates to every binary partition B an outcome $W(B) \in \{-1, +1\}.$

	Ann	Bobby	Carol	Dan	Eve	Finn	W(B)
В	+	-	+	-	+	+	+1

Binary partition

A binary partition B is a map on V (voters) s.t. $B(i) \in \{-1, +1\}$ for all $i \in V$.

Binary voting rule A binary voting rule W associates to every binary partition B an outcome $W(B) \in \{-1, +1\}.$

	Ann	Bobby	Carol	Dan	Eve	Finn	W(B)
В	+	-	+	-	+	+	+1
$B' \ge B$	+	+	+	-	+	+	+1

More formally

Binary partition

A binary partition B is a map on V (voters) s.t. $B(i) \in \{-1, +1\}$ for all $i \in V$.

Binary voting rule

A binary voting rule W associates to every binary partition B an outcome $W(B) \in \{-1, +1\}$.

	Ann	Bobby	Carol	Dan	Eve	Finn	W(B)
В	+	-	+	-	+	+	+1
$B' \ge B$	+	+	+	-	+	+	+1
B_	-	-	-	-	-	-	—1
B_+	+	+	+	+	+	+	+1

More formally

Binary partition

A binary partition B is a map on V (voters) s.t. $B(i) \in \{-1, +1\}$ for all $i \in V$.

Binary voting rule A binary voting rule W associates to every binary partition B an outcome $W(B) \in \{-1, +1\}.$

Weighted voting rule (= Weighted Voting Game) A weighted voting rule with weights $w : V \to \mathbb{N}$ and a quota $q \in \mathbb{N}$ is such that W(B) = +1 if and only if $\sum_{i \in B^+} w(i) \ge q$.

	Ann	Bobby	Carol	Dan	Eve	Finn	Total	W(B)
Weights	4	1	4	4	2	2	17	
В	+	-	+	-	+	+	12	+1

The **Penrose-Banzhaf measure** is the probability of a voter being able to alter the election's outcome given the following probabilistic model: *all binary partitions are equally likely to occur.*

Penrose-Banzhaf measure

Given a binary voting rule W, the **Penrose-Banzhaf measure** of voter $i \in V$ is defined as:

$$\mathcal{M}_{i}(W) = \sum_{B \in \mathcal{B}} \mathbb{P}(B) \frac{W(B_{i+}) - W(B_{i-})}{2},$$

where $\mathbb{P}(B) = 1/2^n$ for all partitions *B*.

	Ann	Bobby	Carol	Dan	Eve	Finn	W(B)
В	+	-	-	?	+	+	

Penrose-Banzhaf measure

Given a binary voting rule W, the **Penrose-Banzhaf measure** of voter $i \in V$ is defined as:

$$\mathcal{M}_{i}(W) = \sum_{B \in \mathcal{B}} \mathbb{P}(B) \frac{W(B_{i+}) - W(B_{i-})}{2},$$

where $\mathbb{P}(B) = 1/2^n$ for all partitions *B*.

	Ann	Bobby	Carol	Dan	Eve	Finn	W(B)
В	+	-	-	?	+	+	
B _D -	+	-	-	-	+	+	-1

Penrose-Banzhaf measure

Given a binary voting rule W, the **Penrose-Banzhaf measure** of voter $i \in V$ is defined as:

$$\mathcal{M}_{i}(W) = \sum_{B \in \mathcal{B}} \mathbb{P}(B) \frac{W(B_{i+}) - W(B_{i-})}{2},$$

where $\mathbb{P}(B) = 1/2^n$ for all partitions *B*.

	Ann	Bobby	Carol	Dan	Eve	Finn	W(B)
В	+	-	-	?	+	+	
B _D -	+	-	-	-	+	+	-1
$B_{\mathbf{D}^+}$	+	-	-	+	+	+	+1

Penrose-Banzhaf measure

Given a binary voting rule W, the **Penrose-Banzhaf measure** of voter $i \in V$ is defined as:

$$\mathcal{M}_{i}(W) = \sum_{B \in \mathcal{B}} \mathbb{P}(B) \frac{W(B_{i+}) - W(B_{i-})}{2},$$

where $\mathbb{P}(B) = 1/2^n$ for all partitions *B*.

Complexity

- **#P-hard** in general [Prasad and Kelly, 1990],
- In WVGs, it can be computed by a pseudo-polynomial algorithm that runs in polynomial time w.r.t. |V| and max_{i∈V} w(i) [Matsui and Matsui, 2000].

	Ann	Bobby	Carol	Dan	Eve	Finn
Weight	4	1	4	4	2	2
$\mathcal{M}_i(W)$	0.3125	0	0.3125	0.3125	0.1875	0.1875

	Ann	Bobby	Carol	Dan	Eve	Finn	Total
Weight	4	1	4	4	2	2	17
Ballots	+	+	Α	-	В	С	

	Ann	Bobby	Carol	Dan	Eve	Finn	Total
Weight	4	1	4	4	2	2	17
Ballots	+	+	Α	-	В	С	
Votes	+	+	+	-	+	+	13

	Ann	Bobby	Carol	Dan	Eve	Finn	Total
Weight	4	1	4	4	2	2	17
Ballots	+	-	Α	-	В	С	
Votes	+	-	+	-	-	+	10

Voting models using **delegations** are getting increasing attention, both in theoretical works and in practice:

- In **Proxy Voting (PV)**, there is a fixed set of representatives to whom voters can delegate their votes.
- In Liquid Democracy (LD), every voter can either vote directly or delegate its voting power to someone else.

We assume that we have a graph structure G = (V, E) in which each voter $v \in V$ can vote for, against or delegate to a neighbour.

G-delegation partition

A G-delegation partition D is a map on V (voters) s.t. $D(i) \in \{-1, +1\} \cup NB_{out}(i)$.

 $NB_{out}(i)$: set of out-neighbours of $i \in V$.

		Ann	Bobby	Carol	Dan	Eve	Finn	
	D	+	+	Α	-	В	С	
$D^- = \{ Dan \}, D^+ = \{ Ann, Carol \},$								
D ^{Bo}	$D^{Bobby} = \{Eve\}, D^{Ann} = \{Carol\} and D^{Carol} = \{Finn\}$							

We assume that we have a graph structure G = (V, E) in which each voter $v \in V$ can vote for, against or delegate to a neighbour.

G-delegation partition

A G-delegation partition D is a map on V (voters) s.t. $D(i) \in \{-1, +1\} \cup NB_{out}(i)$.

Direct vote partition

A direct vote partition T is a map on V s.t. $T(i) \in \{-1, 0, +1\}$.

	Ann	Bobby	Carol	Dan	Eve	Finn
D	+	+	Α	-	В	С

We assume that we have a graph structure G = (V, E) in which each voter $v \in V$ can vote for, against or delegate to a neighbour.

G-delegation partition

A G-delegation partition D is a map on V (voters) s.t. $D(i) \in \{-1, +1\} \cup NB_{out}(i)$.

Direct vote partition

A direct vote partition T is a map on V s.t. $T(i) \in \{-1, 0, +1\}$.

	Ann	Bobby	Carol	Dan	Eve	Finn
D	+	+	Α	-	В	С
ΤD	+	+	+	-	+	+

 \Rightarrow A G-delegation partition D naturally induces a direct-vote partition T_D .

We assume that we have a graph structure G = (V, E) in which each voter $v \in V$ can vote for, against or delegate to a neighbour.

G-delegation partition

A G-delegation partition D is a map on V (voters) s.t. $D(i) \in \{-1, +1\} \cup NB_{out}(i)$.

Direct vote partition

A direct vote partition T is a map on V s.t. $T(i) \in \{-1, 0, +1\}$.

	Ann	Bobby	Carol	Dan	Eve	Finn
D	+	+	F	-	В	С
T_D	+	+	0	-	+	0

 \Rightarrow A G-delegation partition D naturally induces a direct-vote partition T_D .

Liquid Democracy (LD) Penrose-Banzhaf measure

Given a digraph G = (V, E) and a ternary voting rule W, the LD Penrose-Banzhaf measure of voter $i \in V$ is defined as:

$$\mathcal{M}_{i}^{ld}(W,G) = \sum_{D \in \mathcal{D}} \mathbb{P}(D) \frac{W(\mathsf{T}_{\mathsf{D}_{i^{+}}}) - W(\mathsf{T}_{\mathsf{D}_{i^{-}}})}{2},$$

where $\mathbb{P}(D)$ is the probability of the G-delegation partition D occurring.

- Probability to **delegate** $p_d^i \in [0, 1]$ and to **vote** $p_v^i = 1 p_d^i$.
- If vote: probability to vote for/against: $p_+ = p_- = 1/2$.
- If delegate: probability to delegate to $j \in NB_{out}(i)$: $1/|NB_{out}(i)|$.

Liquid Democracy (LD) Penrose-Banzhaf measure

Given a digraph G = (V, E) and a ternary voting rule W, the LD Penrose-Banzhaf measure of voter $i \in V$ is defined as:

$$\mathcal{M}_{i}^{ld}(W,G) = \sum_{D \in \mathcal{D}} \mathbb{P}(D) \frac{W(\mathsf{T}_{\mathsf{D}_{i^{+}}}) - W(\mathsf{T}_{\mathsf{D}_{i^{-}}})}{2},$$

where $\mathbb{P}(D)$ is the probability of the G-delegation partition D occurring.

- Probability to **delegate** $p_d^i \in [0, 1]$ and to **vote** $p_v^i = 1 p_d^i$.
- If vote: probability to vote for/against: $p_+ = p_- = 1/2$.
- If delegate: probability to delegate to $j \in NB_{out}(i)$: $1/|NB_{out}(i)|$.

If $p_d^i = 0$ for every voter $i \in N$, we have the classic Penrose-Banzhaf index.

Complexity

Computing the LD Penrose-Banzhaf:

• **#P-hard**, even for Weighted Voting Games (WVG).

Complexity

Computing the LD Penrose-Banzhaf:

- **#P-hard**, even for Weighted Voting Games (WVG).
- For bipartite and complete graphs, it can be computed by a pseudo-polynomial algorithm that runs in polynomial time w.r.t. |V| and max_{i∈V} w(i).

In **Proxy Voting (PV)**, we have delegatees $i \in V_d$ (proxies) and delegators $i \in V_v$.

Complexity

The LD Penrose-Banzhaf can be computed by a **pseudo-polynomial algorithm** that runs in polynomial time w.r.t. |V| and $\max_{i \in V} w(i)$.

Proxy Voting: Experiments

Figure 1: 100 voters, WVG with all weights equal to 1 and q = 50%.

The lower the number of proxies, the **more unequal the voting power of the voters**.

In Liquid Democracy, any voter can delegate to any other voter, or vote themselves.

Complexity

The LD Penrose-Banzhaf can be computed by a **pseudo-polynomial algorithm** that runs in polynomial time w.r.t. |V| and $\max_{i \in V} w(i)$.

Liquid Democracy: experiments

Figure 2: Penrose-Banzhaf index of the voters with probability to delegate p_d . 100 voters, WVG with 50 (resp. 30, 20) voters with weights equal to 1 (resp. 2, 5) and q = 50%.

When the probability to delegate p_d gets higher, the **voting weight** has less influence on the voting power.

Figure 3: Distribution of the criticality of the voters in the network, from the highest degree to the smallest criticality

Random graph G(n, p)

- Undirected.
- Every edge has probability *p* to exist.

Figure 3: Distribution of the criticality of the voters in the network, from the highest criticality to the smallest criticality

Preferential attachment model

- [Barabási and Albert, 1999].
- Undirected.
- Voters join the network one by one and are more likely to be linked to already popular voters.
- "Rich get richer"

Figure 3: Distribution of the criticality of the voters in the network, from the highest criticality to the smallest criticality

Small world model

- [Watts and Strogatz, 1998] .
- Undirected.
- Voters on a circle and linked in priority to their neighbours on the circle.

Figure 3: Distribution of the criticality of the voters in the network, from the highest criticality to the smallest criticality

Spatial models

- Directed.
- Voters randomly placed on a 2D-plane (Uniform or Gaussian distribution).
- Voters have a directed edge towards their *k* nearest neighbours.

Figure 3: Distribution of the criticality of the voters in the network, from the highest criticality to the smallest criticality

example with k = 3 layers.

Figure 3: Distribution of the criticality of the voters in the network, from the highest criticality to the smallest criticality

Figure 4: Distribution of the degree of the voters in the network, from the highest degree to the smallest degree

This paper continues the tradition of extending the notion of a priori voting power to new voting models.

- We have introduced the *Liquid Democracy Penrose-Banzhaf measure* to evaluate **how critical voters are** in deciding the outcome of an election where delegations play a key role.
- **Complexity** and hardness results, and pseudo-polynomial algorithms for PV and LD.
- Experimental analysis of the criticality in various networks and with varying parameters.

Further research directions:

- Other delegations **models** (ranked delegations, including abstention, etc.).
- Finding conditions (like adding or removing neighbours) that **affects the power measure**.
- Analysing **real data**, using real networks for instance.

Thanks for your attention!

Questions?

Bibliography

🔋 Banzhaf III, J. F. (1964).

Weighted voting doesn't work: A mathematical analysis.

Rutgers L. Rev., 19:317.

- Barabási, A.-L. and Albert, R. (1999).
 Emergence of scaling in random networks. Science, 286(5439):509–512.
- 📔 Coleman, J. S. (1971).

Control of collectivities and the power of a collectivity to act. *Social choice*, pages 269–300.

Matsui, T. and Matsui, Y. (2000).
 A survey of algorithms for calculating power indices of weighted majority games.
 Journal of the Operations Research Society of Japan. 43(1):71–86.