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A voting game

Board of directors, each member has a voting weight:

Ann Bobby Carol Dan Eve Finn‘Total
Weight 4 1 4 4 2 2 17

13

+ + - + + +

Rule: a vote is successful if the sum of weights of voters in favor (+) is > g = 12.
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A voting game

European Council of Ministers (1958), each member has a voting weight:

France Luxembourg Germany Italy Belgium Netherlands

Weight 4 1 4 4 2 2

Rule: a vote is successful if the sum of weights of voters in favor (+) is > g = 12.

Luxembourg never has any power over the outcome of the vote.



How to measure the voting power?

- P-power: [Shapley and Shubik, 1954].
- |-power: [Penrose, 1946, Banzhaf Ill, 1964, Coleman, 1971]
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More formally

Binary partition
A binary partition B is a map on V (voters) st. B(i) € {-1,+1} forall i € V.

Ann Bobby Carol Dan Eve Finn

B + - + - + +

B~ = {Bobby, Dan} and B™ = {Ann, Carol, Eve, Finn}
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More formally

Binary partition
A binary partition B is a map on V (voters) st. B(i) € {-1,+1} forall i € V.

Binary voting rule
A binary voting rule W associates to every binary partition B an outcome

W(B) € {-1,+1}.

Weighted voting rule (= Weighted Voting Game)
A weighted voting rule with weights w : V — N and a quota g € N is such that
W(B) = +1if and only if >~ w(i) > q.

Ann Bobby Carol Dan Eve Finn‘Total W(B)

Weights 4 1 4 4 2 2 | a7
B+ - ' -+ x| 120 4




The Penrose-Banzhaf measure is the probability of a voter being able to alter the
election’s outcome given the following probabilistic model: all binary partitions
are equally likely to occur.



Penrose-Banzhaf measure

Penrose-Banzhaf measure
Given a binary voting rule W, the Penrose-Banzhaf measure of voteri € V is
defined as:

Miw) = Y p(g) PE B,
BeB

where P(B) = 1/2" for all partitions B.
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Penrose-Banzhaf measure

Penrose-Banzhaf measure
Given a binary voting rule W, the Penrose-Banzhaf measure of voteri € V is
defined as:

Miw) = Y () YEZWED),
BeB

where P(B) = 1/2" for all partitions B.

Complexity
- #P-hard in general [Prasad and Kelly, 1990],

- In WVGs, it can be computed by a pseudo-polynomial algorithm that runs in
polynomial time w.rt. |V| and max;ey w(i) [Matsui and Matsui, 2000].



A voting game

Ann  Bobby Carol Dan Eve Finn

Weight 4 1 4 4 2 2
M(W) 03125 0 03125 03125 0.1875 0.1875

Rule: a vote is successful if the sum of weights of voters in favor (+) is > g = 12.



Liquid Democracy

Eve (2) «——Finn (2)

Carol (4 ) \ ‘ »Dan (4)

Ann ) «——> Bobby (1

Ann Bobby Carol Dan Eve Finn‘Total
Weight 4 1 4 4 2 2 | 17

Rule: a vote is successful if the sum of weights of voters in favor (+) is > g = 12.
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Eve Finn
Carol Dan (-)
Ann (+) Bobby (+)
Ann Bobby Carol Dan Eve Finn ‘ Total

Weight 4 1 4 4 2 2 17
Ballots + + A - B C

Rule: a vote is successful if the sum of weights of voters in favor (+) is > g = 12.
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Liquid Democracy

Eve(-) Finn (+)

Carol (+) Dan (-)

Ann (+) Bobby(-)

Ann Bobby Carol Dan Eve Finn | Total

Weight 4 1 4 4 2 2 17
Ballots + - A - B C
Votes + - + - - + 10

Rule: a vote is successful if the sum of weights of voters in favor (+) is > g = 12.



Motivation behind delegations

Voting models using delegations are getting increasing attention, both in
theoretical works and in practice:

- In Proxy Voting (PV), there is a fixed set of representatives to whom voters
can delegate their votes.

- In Liquid Democracy (LD), every voter can either vote directly or delegate its
voting power to someone else.



Formal definition

We assume that we have a graph structure G = (V, E) in which each voterv € V
can vote for, against or delegate to a neighbour.

G-delegation partition
A G-delegation partition D is a map on V (voters) st. D(i) € {-1,+1} U NBoy:(i).
NBout(): set of out-neighbours of i € V.

Ann Bobby Carol Dan Eve Finn
D + + A = B C

D~ = {Dan}, D* = {Ann, Carol},
DBobby — fEve}, DA™ = {Carol} and D! = {Finn}
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Formal definition

We assume that we have a graph structure G = (V, E) in which each voterv € V
can vote for, against or delegate to a neighbour.

G-delegation partition
A G-delegation partition D is a map on V (voters) st. D(i) € {-1,+1} U NBoy:(i).
Direct vote partition

A direct vote partition T is a map on V s.t. T(i) € {-1,0, +1}.

Ann Bobby Carol Dan Eve Finn

p + + F - B C
o + + 0 - + 0

= A G-delegation partition D naturally induces a direct-vote partition Tp. "



Liquid Democracy (LD) Penrose-Banzhaf measure
Given a digraph G = (V, E) and a ternary voting rule W, the LD Penrose-Banzhaf
measure of voter | € V is defined as:

MEW,6) = 3 B(D) W(Tp,. ) — W(TD )7

DeD

where P(D) is the probability of the G-delegation partition D occurring.

- Probability to delegate p!, € [0,1] and to vote pl, =1 - pl,.
- If vote: probability to vote for/against: p, =p_ =1/2.
- If delegate: probability to delegate to j € NBoyt(i): 1/[NBout(i)|-

1



Liquid Democracy (LD) Penrose-Banzhaf measure
Given a digraph G = (V, E) and a ternary voting rule W, the LD Penrose-Banzhaf
measure of voter | € V is defined as:

MEW,6) = 3 B(D) W(Tp,. ) — W(TD )7

DeD

where P(D) is the probability of the G-delegation partition D occurring.

- Probability to delegate p!, € [0,1] and to vote pl, =1 - pl,.
- If vote: probability to vote for/against: p, =p_ =1/2.
- If delegate: probability to delegate to j € NBoyt(i): 1/[NBout(i)|-

If p{j = 0 for every voter i € N, we have the classic Penrose-Banzhaf index.
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Complexity and computation

Complexity
Computing the LD Penrose-Banzhaf:

- #P-hard, even for Weighted Voting Games (WVG).
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Complexity and computation

Complexity
Computing the LD Penrose-Banzhaf:

- #P-hard, even for Weighted Voting Games (WVG).

- For bipartite and complete graphs, it can be computed by a

pseudo-polynomial algorithm that runs in polynomial time w.rt. |V| and
max;jey W(i).

12



Proxy Voting

In Proxy Voting (PV), we have delegatees i € V4 (proxies) and delegators i € V.

/B%bby\
Carol Finn

Complexity
The LD Penrose-Banzhaf can be computed by a pseudo-polynomial algorithm
that runs in polynomial time w.rt. |V| and max;cy w(i).

13



Proxy Voting: Experiments

02 1 @ i proxy (20 proxies) M i delegator (20 proxies)
@® i proxy (50 proxies) ## i delegator (50 proxies)

Figure 1: 100 voters, WVG with all weights equal to 1and g = 50%.
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The lower the number of proxies,
the more unequal the voting power of the voters.
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Liquid Democracy

In Liquid Democracy, any voter can delegate to any other voter, or vote
themselves.

Eve (2) «—— Finn (2)

o W

Carol (4) > Dan (4)

Nl

Ann (4) «<——— Bobby (1)

Complexity
The LD Penrose-Banzhaf can be computed by a pseudo-polynomial algorithm
that runs in polynomial time w.rt. |V| and max;cy w(i).



Liquid Democracy: experiments
0.2 ® i with w(i) =5
® i with w(i) =2
0157 I with w(i) =1
=

Figure 2: Penrose-Banzhaf index of the voters with probability to delegate p,. 100 voters,

0.9

WVG with 50 (resp. 30, 20) voters with weights equal to 1 (resp. 2, 5) and g = 50%.



When the probability to delegate p4 gets higher,
the voting weight has less influence on the voting power.



Criticality distribution and degree distribution

°G(n,p)
0.3 |
S 024
S
0.1
0 \
0% 50% 100%

Figure 3: Distribution of the criticality of the
voters in the network, from the highest
degree to the smallest criticality

Random graph G(n, p)

- Undirected.
- Every edge has probability p to exist.
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Criticality distribution and degree distribution

I °G(n,p)
0.3 o o Pref. attachment
N ‘
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Figure 3: Distribution of the criticality of the
voters in the network, from the highest
criticality to the smallest criticality

Preferential attachment model

- [Barabasi and Albert, 1999].
- Undirected.

- Voters join the network one by one

and are more likely to be linked to
already popular voters.

- "Rich get richer”
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Criticality distribution and degree distribution
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Figure 3: Distribution of the criticality of the
voters in the network, from the highest
criticality to the smallest criticality

Small world model

- [Watts and Strogatz, 1998] .
- Undirected.

- Voters on a circle and linked in

priority to their neighbours on the
circle.
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Criticality distribution and degree distribution
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Figure 3: Distribution of the criticality of the
voters in the network, from the highest
criticality to the smallest criticality

Spatial models

- Directed.
- Voters randomly placed on a

2D-plane (Uniform or Gaussian
distribution).

- Voters have a directed edge towards

their k nearest neighbours.
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Criticality distribution and degree distribution
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Figure 3: Distribution of the criticality of the
voters in the network, from the highest
criticality to the smallest criticality

k-layers models

example with k = 3 layers.
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Criticality distribution and degree distribution
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Figure 3: Distribution of the criticality of the Figure 4: Distribution of the degree of the
voters in the network, from the highest voters in the network, from the highest
criticality to the smallest criticality degree to the smallest degree
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Conclusion

This paper continues the tradition of extending the notion of a priori voting
power to new voting models.

- We have introduced the Liquid Democracy Penrose-Banzhaf measure to
evaluate how critical voters are in deciding the outcome of an election
where delegations play a key role.

- Complexity and hardness results, and pseudo-polynomial algorithms for PV
and LD.

- Experimental analysis of the criticality in various networks and with varying
parameters.

20



Conclusion

Further research directions:

- Other delegations models (ranked delegations, including abstention, etc.).

- Finding conditions (like adding or removing neighbours) that affects the
power measure.

- Analysing real data, using real networks for instance.

21



Thanks for your attention!

Questions?

22
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