How to derive the axis of candidates from approval ballots?

Théo Delemazure

Miles Seminar - July 6th 2023

- Second year PhD student under the supervision of Jerome Lang and Dominik Peters.
- Formation: ENS (2017-2021) and Master IASD (2019-2020).

- Second year PhD student under the supervision of Jerome Lang and Dominik Peters.
- Formation: ENS (2017-2021) and Master IASD (2019-2020).
- Disclaimer: Have not been doing much machine learning since then.

I chose to focus on **Computational Social Choice** (COMSOC). And mostly **voting theory**.

My tools:

- Axiomatic analysis: does this voting rule satisfies this particular property?
- **Computational complexity:** how hard is it to compute the results of this problem? How hard is it to manipulate?
- **Data simulation:** if I generate voting data with some model, which rule performs the best for some metrics?
- Data analysis: what would be the results of this rule on this real dataset?

It would be interesting to mix this with machine learning ideas:

- Rules that use **machine learning techniques** to aggregate preferences, or for other social choice problems (e.g. matching).
- Using ML to evaluate the rules.
- Learning to vote: bandit/reinforcement learning to simulate behavior of voters.
- Using preference aggregation knowledge for classifiers aggregation/ensemble learning.

It would be interesting to mix this with machine learning ideas:

- Rules that use **machine learning techniques** to aggregate preferences, or for other social choice problems (e.g. matching).
- Using ML to evaluate the rules.
- Learning to vote: bandit/reinforcement learning to simulate behavior of voters.
- Using preference aggregation knowledge for classifiers aggregation/ensemble learning.

Let's see this on an example!

Voter Autrement

Website of the experiment Voter Autrement 2022

Voter Autrement

Prequel of this presentation

Approval ballot

Candidate 1	
Candidate 2	
Candidate 3	
Candidate 4	
Candidate 5	
Candidate 6	

Ce que le vote par approbation révèle des préférences des électeurs français by Isabelle Lebon, Antoinette Baujard, Frédéric Gavrel, Herrade Igersheim, Jean-François Laslier

They use the approval ballots of the experiment in 2012 to compute the most likely left-right axis and how much it fits the data. What is the best way to obtain a left-right axis of the candidates from the approval ballots?

How to qualitatively evaluate if a set of candidates can be represented by an axis?

Let's say we have the following profile:

Let's say we have the following profile:

The profile is linear.

Let's say we have the following profile:

The profile is not linear anymore.

We select the axis that minimize some distance:

• Voter Deletion (VD): how many voters do we need to delete to make the profile linear with the axis?

	Melenchon	Joly	Hollande	Bayrou	Sarkozy	Le Pen
<i>v</i> ₁				\checkmark	\checkmark	
<i>v</i> ₂					\checkmark	\checkmark
<i>v</i> ₃	\checkmark		\checkmark			
<i>V</i> 4			\checkmark		\checkmark	
V_5		\checkmark	\checkmark			

The profile is **not linear anymore**.

	Melenchon	Joly	Hollande	Bayrou	Sarkozy	Le Pen
<i>v</i> ₁				\checkmark	\checkmark	
<i>v</i> ₂					\checkmark	\checkmark
V5		\checkmark	\checkmark			

The profile is **linear!**

We select the axis that minimize some distance:

- Voter Deletion (VD): how many voter do we need to delete to make the profile linear with the axis?
- Ballot Completion (BC): how many candidates do we need to add to approval ballots to make the profile linear with the axis?

	Melenchon	Joly	Hollande	Bayrou	Sarkozy	Le Pen
<i>v</i> ₁				\checkmark	\checkmark	
<i>v</i> ₂					\checkmark	\checkmark
<i>v</i> ₃	\checkmark		\checkmark			
<i>V</i> 4			\checkmark		\checkmark	
V_5		\checkmark	\checkmark			

We need to add 2 candidates to the approval ballots.

We select the axis that minimize some distance:

- Voter Deletion (VD): how many voter do we need to delete to make the profile linear with the axis?
- Ballot Completion (BC): how many candidates do we need to add to approval ballots to make the profile linear with the axis?
- Minimal Flips (MF), Minimal Swaps (MS) and Forbidden Triplets (FT).

- 1. Computational complexity: how hard is it to compute the best axis?
- 2. Data analysis on real dataset: what do we observe on real data?
- 3. Experiments and simulations: which rule perform the best on simulated data?
- 4. Axiomatic analysis: what are the theorethical properties of the rules?

1. Computational complexity

- Direct reductions to already known NP-Hard problems.
- Brute-force algorithm: how to optimize it? (1 month \rightarrow 1 hour).
- Integer Linear Program

Time to compute the axis for different number of candidates (n=1000)

French presidential elections from 2002 to 2022 , and other political elections (below: France 2017, \sim 10,000 voters).

Voter Deletion: FA \prec MLP \prec NDA \prec FF \prec EM \prec BH \prec JLM \prec PP \prec NA \prec JL \prec JC

Ballot Completion: MLP \prec NDA \prec FF \prec JL \prec EM \prec BH \prec JLM \prec PP \prec NA \prec FA \prec JC

73% of votes are intervals (69% if we exclude votes with 1 candidate), and \sim 0.7 candidates to add per voter for *Ballot Completion* (excluding votes with 1 candidate).

French presidential elections from 2002 to 2022 , and other political elections (below: France 2017, \sim 10,000 voters).

Voter Deletion: FA \prec MLP \prec NDA \prec FF \prec EM \prec BH \prec JLM \prec PP \prec NA \prec JL \prec JC

Ballot Completion: MLP \prec NDA \prec FF \prec JL \prec EM \prec BH \prec JLM \prec PP \prec NA \prec FA \prec JC

Small candidates seem pushed towards the extremes.

2. Analysis on real datasets

2. Analysis on real datasets

Sushi dataset of rankings, we can vary the number of approved candidates.

2. Analysis on real datasets

oiliness score

2. Analysis on real datasets

Approval score

- We need a model to generate synthetic approval data with an underlying axis.
- We also want to have "big" and "small" candidates.
- Proposal:
 - 1. Voters and candidates have a positions $x \in [0, 1]$ and candidates also have a *fame* score $s_c \in [0, 1]$.
 - 2. Voters have a higher chance to approve candidates that are close to them, and that are famous.

Experiments

- Which rule find the correct axis most of the time? How does it depends on the parameters of the model?
- Which rule is the less sensitive to the eccentricity issue?
- Which rule is the most robust to slight variations of the profile?
- How do the rules compare to MLE?

• Linear-consistency: if a profile is a linear (i.e. all votes are interval of some axis), the output should be all the axis consistent with the profile.

- Linear-consistency: if a profile is a linear (i.e. all votes are interval of some axis), the output should be all the axis consistent with the profile.
- Anonymity: if we permute the voters, the result should be the same

- Linear-consistency: if a profile is a linear (i.e. all votes are interval of some axis), the output should be all the axis consistent with the profile.
- Anonymity: if we permute the voters, the result should be the same
- **Reinforcement:** if two profiles result in the same axis, the union should also results in this axis.

- Linear-consistency: if a profile is a linear (i.e. all votes are interval of some axis), the output should be all the axis consistent with the profile.
- Anonymity: if we permute the voters, the result should be the same
- **Reinforcement:** if two profiles result in the same axis, the union should also results in this axis.
- Neutrality, Continuity, Clone-proofness, Heredity, Stability,...

• Characterize a family of rule: $f(A, \prec) = \sum_{v \in V} \text{score}(A_v, \prec)$ (Anonymity + Reinforcement + Continuity).

- Characterize a family of rule: $f(A, \prec) = \sum_{v \in V} \text{score}(A_v, \prec)$ (Anonymity + Reinforcement + Continuity).
- + Stability: $score(A_v, \prec) \in \{0, 1\}.$

- Characterize a family of rule: $f(A, \prec) = \sum_{v \in V} \text{score}(A_v, \prec)$ (Anonymity + Reinforcement + Continuity).
- + Stability: $score(A_v, \prec) \in \{0, 1\}.$
- **Characterize specific rules** (Voter Deletion: *Anonymity* + *Neutrality* + *Reinforcement* + *Continuity* + *Stability* + *Linear-consistency*).

- Characterize a family of rule: $f(A, \prec) = \sum_{v \in V} \text{score}(A_v, \prec)$ (Anonymity + Reinforcement + Continuity).
- + Stability: $score(A_v, \prec) \in \{0, 1\}.$
- **Characterize specific rules** (Voter Deletion: *Anonymity* + *Neutrality* + *Reinforcement* + *Continuity* + *Stability* + *Linear-consistency*).
- **Highlights impossibilities**: *Linear-consistency* + *Indifference to unknown candidates*.

- Linear-consistency: if a profile is a linear (i.e. all votes are interval of some axis), the output should be all the axis consistent with the profile.
- Indifference to unknown candidates: if nobody approve a candidate, its position is interchangeable in the output axis.

Example: 3 candidates $\{a, b, c\}$ and 1 voter $\{a, b\}$. *c* is never approved but there is no reason to put it between *a* and *b*.

There are two ways out of this issue:

- 1. A feature, not a bug: if nobody like some candidate, it makes sense that it is put at an extremity.
- 2. **Finer model:** instead of a simple ordering, we could have something like a *fuzzy relation*, or only output a subset of the candidates. We could also output positions on a metric space.

What if, instead of a an axis, we want to output more information, for instance **the positions of all candidates on a 1D (or 2D) metric space?**

\Rightarrow Dimension reduction.

I tried with the dimension reduction algorithms I know: *PCA*, *TSNE*, *Isomap*, *MDS*. **Results are bad:** the resulting axis do not make any sense, and some of them are not deterministic.

- Can we use **machine learning techniques** to find interesting way to solve this problem?
- Can this problem be useful in machine learning ? (applied to a group of classifiers for instance?)

Thanks for your attention!