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A voting game
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Voters can vote in favor or against.

Example rule:
a vote is successful if there is more weight in favor than against.
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Question:

Take a voting game and a social network.
Without assuming anything about the bill or the voters,

what is the a priori voting power of each voter in the network?



Given that voting models with delegations are receiving more attention, both
theoretically and in practice, how can voting power be measured in these more
complex models?

- Proxy Voting (PV): there is a fixed set of representatives to whom voters can
delegate their votes.

- Complete Liquid Democracy (LD): every voter can either vote directly or
delegate their voting power to someone else.



Formal definitions

We assume the voters are connected by a graph G = (V, E) and each voterv € V
can vote in favour, against or delegate to a neighbour.

G-delegation partition
A G-delegation partition D is a map on V (voters) st. D(i) € {-1,+1} U NBoy:(i).
NBout(): set of out-neighbours of i € V.
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Formal definitions

We assume the voters are connected by a graph G = (V, E) and each voter v € V
can vote in favour, against or delegate to a neighbour.

G-delegation partition
A G-delegation partition D is a map on V (voters) st. D(i) € {-1,+1} U NBoy:(i).

Direct vote partition
A direct vote partition T is a map on V s.t. T(i) € {-1,0, +1}.
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= A G-delegation partition D naturally induces a direct-vote partition Tp.
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A ternary voting rule W associates to every direct vote partition T an outcome

W(T) € {1, +1}.
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Formal definitions

Direct vote partition
A direct vote partition T isa map on V s.t. T(i) € {-1,0, +1}.

Ternary voting rule
A ternary voting rule W associates to every direct vote partition T an outcome
W(T) € {1, +1}.

Weighted voting rule (= Weighted Voting Game)
A weighted voting rule with weights w : V — N and a quota g € (0.5,1] is such
that W(T) = +1 ifand only if > ;.7 w(i) > q - > icrrur— W(i).

The example from the introduction is a WVG with g = 0.5.



Penrose-Banzhaf

Liquid Democracy (LD) Penrose-Banzhaf measure
Given a digraph G = (V, E) and a ternary voting rule W, the LD Penrose-Banzhaf
measure of voter i € V is defined as:

o) — W(TD,)
MW, G) =Y " P(D) =7
DeD

where P(D) is the probability of the G-delegation partition D occurring.

- Probability to delegate p}; € [0,1] and to vote p}, = 1 — pl.
- If vote: probability to vote in favor/against: p, =p_ =1/2.
- If delegate: probability to delegate to j € NBoyt(i): 1/|NBoyt(i)]-



Computational complexity

Theorem
Computing the LD Penrose-Banzhaf:

- #P-hard, even for Weighted Voting Games (WVG).



Computational complexity

Theorem
Computing the LD Penrose-Banzhaf:

- #P-hard, even for Weighted Voting Games (WVG).

- For bipartite graphs and complete graphs, and WVG, it can be computed by a

pseudo-polynomial algorithm that runs in polynomial time w.rt. |V| and
max;jey W(i).



Proxy voting

In Proxy voting (PV), we have delegatees i € V4 (proxies) and delegators i € V,.

Mm\
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Complexity
The LD Penrose-Banzhaf can be computed by a pseudo-polynomial algorithm
that runs in polynomial time w.rt. |V| and maxcy W(i).



Complete liquid democracy

In complete liquid democracy, any voter can delegate to any other voter, or vote
themselves.

Stan Rach

Esla Dan

Complexity
The LD Penrose-Banzhaf can be computed by a pseudo-polynomial algorithm
that runs in polynomial time w.rt. |V| and maxcy W(i).
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Complete liquid democracy: experiments
, w(i) =2 (30%) or

Weighted voting game with 100 voters of weights
w(i) = 5(20%), and quota g = 0.5.
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Criticality distribution and degree distribution
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Figure 1: Distribution of the criticality of the Figure 2: Distribution of the degree of the
voters in the network, from the highest voters in the network, from the highest
criticality to the smallest criticality. degree to the smallest degree.
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Conclusion

- This paper continues the tradition of extending the notion of a priori voting
power to new voting models.
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Conclusion

- This paper continues the tradition of extending the notion of a priori voting
power to new voting models.

- Complexity and hardness results, and pseudo-polynomial algorithms for PV
and LD.

- Experimental analysis of the criticality in various networks and with varying
parameters.

- Further research directions: analysis with real data (e.g. with real networks),
study other delegation models (e.g. including abstention or ranked
delegations).
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