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A voting game

Nimö (5) Mich (1)

Rach (4)

Dan (5)Esla (3)

Stan (2) Total weight: 20

Voters can vote in favor or against.

Example rule:
a vote is successful if there is more weight in favor than against.
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Question:

Take a voting game and a social network.

Without assuming anything about the bill or the voters,

what is the a priori voting power of each voter in the network?
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Motivation

Given that voting models with delegations are receiving more attention, both
theoretically and in practice, how can voting power be measured in these more

complex models?

• Proxy Voting (PV): there is a fixed set of representatives to whom voters can
delegate their votes.

• Complete Liquid Democracy (LD): every voter can either vote directly or
delegate their voting power to someone else.
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Formal definitions

We assume the voters are connected by a graph G = (V, E) and each voter v ∈ V
can vote in favour, against or delegate to a neighbour.

G-delegation partition
A G-delegation partition D is a map on V (voters) s.t. D(i) ∈ {-1, +1} ∪ NBout(i).

NBout(i): set of out-neighbours of i ∈ V .

Nimö Mich Rach Dan Esla Stan

D + - N - M R

⇒ A G-delegation partition D naturally induces a direct-vote partition TD.
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Formal definitions

Direct vote partition
A direct vote partition T is a map on V s.t. T(i) ∈ {-1,0, +1}.

Ternary voting rule
A ternary voting rule W associates to every direct vote partition T an outcome
W(T) ∈ {-1, +1}.

Weighted voting rule (= Weighted Voting Game)
A weighted voting rule with weights w : V → N and a quota q ∈ (0.5, 1] is such
that W(T) = +1 if and only if

∑
i∈T+ w(i) > q ·

∑
i∈T+∪T− w(i).

The example from the introduction is a WVG with q = 0.5.
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Penrose-Banzhaf

Liquid Democracy (LD) Penrose-Banzhaf measure
Given a digraph G = (V, E) and a ternary voting rule W, the LD Penrose-Banzhaf
measure of voter i ∈ V is defined as:

Mld
i (W,G) =

∑
D∈D

P(D)
W(TDi+ )−W(TDi− )

2
,

where P(D) is the probability of the G-delegation partition D occurring.

• Probability to delegate pid ∈ [0, 1] and to vote piv = 1− pid.
• If vote: probability to vote in favor/against: p+ = p− = 1/2.
• If delegate: probability to delegate to j ∈ NBout(i): 1/|NBout(i)|.
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Computational complexity

Theorem
Computing the LD Penrose-Banzhaf:

• #P-hard, even for Weighted Voting Games (WVG).

• For bipartite graphs and complete graphs, and WVG, it can be computed by a
pseudo-polynomial algorithm that runs in polynomial time w.r.t. |V| and
maxi∈V w(i).
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Proxy voting

In Proxy voting (PV), we have delegatees i ∈ Vd (proxies) and delegators i ∈ Vv .

Nimö Mich

Rach Dan Esla Stan

Complexity
The LD Penrose-Banzhaf can be computed by a pseudo-polynomial algorithm
that runs in polynomial time w.r.t. |V| and maxi∈V w(i).
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Complete liquid democracy

In complete liquid democracy, any voter can delegate to any other voter, or vote
themselves.

Nimö Mich

Rach

DanEsla

Stan

Complexity
The LD Penrose-Banzhaf can be computed by a pseudo-polynomial algorithm
that runs in polynomial time w.r.t. |V| and maxi∈V w(i).
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Complete liquid democracy: experiments

Weighted voting game with 100 voters of weights w(i) = 1 (50%), w(i) = 2 (30%) or
w(i) = 5 (20%), and quota q = 0.5.
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Criticality distribution and degree distribution
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Figure 1: Distribution of the criticality of the
voters in the network, from the highest
criticality to the smallest criticality.
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Figure 2: Distribution of the degree of the
voters in the network, from the highest
degree to the smallest degree.
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Conclusion

• This paper continues the tradition of extending the notion of a priori voting
power to new voting models.

• Complexity and hardness results, and pseudo-polynomial algorithms for PV
and LD.

• Experimental analysis of the criticality in various networks and with varying
parameters.

• Further research directions: analysis with real data (e.g. with real networks),
study other delegation models (e.g. including abstention or ranked
delegations).
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Thanks for your attention!
Come to our poster!

Paper #4920 (Board R)
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