Measuring a Priori Voting Power in Liquid Democracy

Racheal Colley Théo Delemazure Hugo Gilbert

theo.delemazure@dauphine.eu

IJCAI 2023

Nimö (5) Mich (1)

Stan (2) Total weight: 20 Rach (4)

Esla (3) Dan (5)

Voters can vote in favor or against.

Example rule:

Esla (3) Dan (5)

Voters can vote in favor or against.

Example rule:

A voting game

Voters can vote in favor or against or delegate their vote.

Example rule:

Voters can vote in favor or against or delegate their vote.

Example rule:

Voters can vote in favor or against or delegate their vote.

Example rule:

Question:

Take a voting game and a social network. Without assuming anything about the bill or the voters, what is the a priori voting power of each voter in the network? Given that voting models with **delegations** are receiving more attention, both theoretically and in practice, how can voting power be measured in these more complex models?

- **Proxy Voting (PV)**: there is a fixed set of representatives to whom voters can delegate their votes.
- **Complete Liquid Democracy (LD)**: every voter can either vote directly or delegate their voting power to someone else.

We assume the voters are connected by a graph G = (V, E) and each voter $v \in V$ can vote in favour, against or delegate to a neighbour.

G-delegation partition

A G-delegation partition D is a map on V (voters) s.t. $D(i) \in \{-1, +1\} \cup NB_{out}(i)$.

 $NB_{out}(i)$: set of out-neighbours of $i \in V$.

	Nimö	Mich	Rach	Dan	Esla	Stan
D	+	-	Ν	-	м	R

We assume the voters are connected by a graph G = (V, E) and each voter $v \in V$ can vote in favour, against or delegate to a neighbour.

G-delegation partition

A G-delegation partition D is a map on V (voters) s.t. $D(i) \in \{-1, +1\} \cup NB_{out}(i)$.

Direct vote partition

A direct vote partition T is a map on V s.t. $T(i) \in \{-1, 0, +1\}$.

	Nimö	Mich	Rach	Dan	Esla	Stan
D	+	-	Ν	-	М	R
T_D	+	-	+	-	-	-

 \Rightarrow A G-delegation partition D naturally induces a direct-vote partition T_D .

Formal definitions

Direct vote partition

A direct vote partition T is a map on V s.t. $T(i) \in \{-1, 0, +1\}$.

Ternary voting rule A ternary voting rule W associates to every direct vote partition T an outcome $W(T) \in \{-1, +1\}.$

Formal definitions

Direct vote partition

A direct vote partition T is a map on V s.t. $T(i) \in \{-1, 0, +1\}$.

Ternary voting rule A ternary voting rule W associates to every direct vote partition T an outcome $W(T) \in \{-1, +1\}.$

Weighted voting rule (= Weighted Voting Game) A weighted voting rule with weights $w : V \to \mathbb{N}$ and a quota $q \in (0.5, 1]$ is such that W(T) = +1 if and only if $\sum_{i \in T^+} w(i) > q \cdot \sum_{i \in T^+ | |T^-|} w(i)$.

Formal definitions

Direct vote partition

A direct vote partition T is a map on V s.t. $T(i) \in \{-1, 0, +1\}$.

Ternary voting rule A ternary voting rule W associates to every direct vote partition T an outcome $W(T) \in \{-1, +1\}.$

Weighted voting rule (= Weighted Voting Game) A weighted voting rule with weights $w : V \to \mathbb{N}$ and a quota $q \in (0.5, 1]$ is such that W(T) = +1 if and only if $\sum_{i \in T^+} w(i) > q \cdot \sum_{i \in T^+ \cup T^-} w(i)$.

The example from the introduction is a WVG with q = 0.5.

Penrose-Banzhaf

Liquid Democracy (LD) Penrose-Banzhaf measure

Given a digraph G = (V, E) and a ternary voting rule W, the LD Penrose-Banzhaf measure of voter $i \in V$ is defined as:

$$\mathcal{M}_{i}^{ld}(W,G) = \sum_{D \in \mathcal{D}} \mathbb{P}(D) \frac{W(T_{D_{i+}}) - W(T_{D_{i-}})}{2}$$

where $\mathbb{P}(D)$ is the probability of the G-delegation partition D occurring.

- Probability to **delegate** $p_d^i \in [0, 1]$ and to **vote** $p_v^i = 1 p_d^i$.
- If vote: probability to vote in favor/against: $p_+ = p_- = 1/2$.
- If **delegate**: probability to delegate to $j \in NB_{out}(i)$: $1/|NB_{out}(i)|$.

Theorem

Computing the LD Penrose-Banzhaf:

• **#P-hard**, even for Weighted Voting Games (WVG).

Theorem

Computing the LD Penrose-Banzhaf:

- **#P-hard**, even for Weighted Voting Games (WVG).
- For *bipartite* graphs and *complete* graphs, and WVG, it can be computed by a pseudo-polynomial algorithm that runs in polynomial time w.r.t. |V| and max_{i∈V} w(i).

In **Proxy voting (PV)**, we have delegatees $i \in V_d$ (proxies) and delegators $i \in V_v$.

Complexity

The LD Penrose-Banzhaf can be computed by a **pseudo-polynomial algorithm** that runs in polynomial time w.r.t. |V| and $\max_{i \in V} w(i)$.

In **complete liquid democracy**, any voter can delegate to any other voter, or vote themselves.

Complexity

The LD Penrose-Banzhaf can be computed by a **pseudo-polynomial algorithm** that runs in polynomial time w.r.t. |V| and $\max_{i \in V} w(i)$.

Complete liquid democracy: experiments

Weighted voting game with 100 voters of weights w(i) = 1 (50%), w(i) = 2 (30%) or w(i) = 5 (20%), and quota q = 0.5.

Criticality distribution and degree distribution

Figure 1: Distribution of the criticality of the voters in the network, from the highest criticality to the smallest criticality.

Figure 2: Distribution of the degree of the voters in the network, from the highest degree to the smallest degree.

• This paper continues the tradition of extending the notion of a priori voting power **to new voting models**.

- This paper continues the tradition of extending the notion of a priori voting power **to new voting models**.
- **Complexity** and hardness results, and pseudo-polynomial algorithms for PV and LD.

- This paper continues the tradition of extending the notion of a priori voting power **to new voting models**.
- **Complexity** and hardness results, and pseudo-polynomial algorithms for PV and LD.
- Experimental analysis of the criticality in various networks and with varying parameters.

- This paper continues the tradition of extending the notion of a priori voting power **to new voting models**.
- **Complexity** and hardness results, and pseudo-polynomial algorithms for PV and LD.
- **Experimental analysis** of the criticality in various networks and with varying parameters.
- Further research directions: analysis with real data (e.g. with real networks), study other delegation models (e.g. including abstention or ranked delegations).

Thanks for your attention!

Come to our poster!

Paper #4920 (Board R)