Aggregating Correlated Estimations with (Almost) no Training

Théo Delemazure

Université Paris Dauphine

François Durand Nokia Bell Labs France

Fabien Mathieu Swapcard

A choice problem.

A set of *m* candidates $C = \{c_1, ..., c_m\}$, each having unknown utility $U(c_j)$.

A set of *n* agents $\mathcal{A} = \{1, ..., n\}$.

Agents give **scores = noisy estimates** of candidates' utilities.

$$s_i(c_j) = U(c_j) + \varepsilon_i(c_j)$$

Our goal: select a candidate with the highest possible utility, based on the agents' estimates.

We assume agents are pre-selected to have similar (good) accuracies.

We assume agents are pre-selected to have similar (good) accuracies.

Solutions.

Range Voting (RV)

Select the candidate that **maximizes the sum/average** of the estimates $w_{RV}(c_j) = \sum_{i=1}^n s_i(c_j)$.

We assume agents are pre-selected to have similar (good) accuracies.

Solutions.

Range Voting (RV)

Select the candidate that **maximizes the sum/average** of the $\sum_{i=1}^{n}$

estimates $w_{RV}(c_j) = \sum_{i=1}^n s_i(c_j)$.

Approval Voting (AV)

Select the candidate that maximizes the **number of agents** who estimate its utility greater than the average $w_{AV}(c_j) = \sum_{i=1}^n 1_{s_i(c_j) \ge \tilde{s_i}}$.

We assume agents are pre-selected to have similar (good) accuracies.

Solutions.

Range Voting (RV)

Select the candidate that **maximizes the sum/average** of the estimator $w_{n}(a) = \sum_{i=1}^{n} e_{n}(a)$

estimates $w_{RV}(c_j) = \sum_{i=1}^n s_i(c_j)$.

Approval Voting (AV)

Select the candidate that maximizes the **number of agents** who estimate its utility greater than the average $w_{AV}(c_j) = \sum_{i=1}^n 1_{s_i(c_j) \ge \tilde{s_i}}$.

Nash Product (NP)

Select the candidate that **maximizes the product** of the estimates $w_{NP}(c_j) = \prod_{i=1}^n s_i(c_j)$.

We assume agents are pre-selected to have similar (good) accuracies.

Solutions.

Range Voting, Approval Voting, Nash Product.

We assume agents are pre-selected to have similar (good) accuracies.

Solutions.

Range Voting, Approval Voting, Nash Product.

Image: Image:

We assume agents are pre-selected to have similar (good) accuracies.

Solutions.

Range Voting, Approval Voting, Nash Product.

Hypothesis 2.

We assume some diversity among the agents' noises.

We assume agents are pre-selected to have similar (good) accuracies.

Solutions.

Range Voting, Approval Voting, Nash Product.

Hypothesis 2.

We assume some diversity among the agents' noises.

But what if we don't?

Our proposal: Embedded Voting (EV)

Embedded Voting: Intuition

Let's say agents are divided in groups G_k .

The idea: each group should have the same weight, whatever its size.

$$w_{EV}(c_j) \propto \prod_{G_k} \sum_{i \in G_k} s_i(c_j)$$

Informally: we do the product of groups scores. Note that this formula is invariant with the sizes of the groups.

Embedded Voting: General case.

Embedded Voting (EV)

Using their estimates of candidates' utilities, **we embed the agents,** such that correlated agents have correlated embeddings. Using the **Singular Value Decomposition (SVD)** on agents' estimates, we can associate singular values to groups scores. Then, the EV score for one candidate is **the product of the most important singular values**.

Trained Embedded Voting (EV+)

Same as EV, but the features for the embeddings are based on **1,000** estimates.

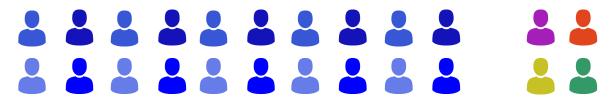
Experimental Validation

Experimental Model

We conducted various experiments **on synthetic data**, with a particular model that is designed to create **a lot of correlations**.

In our default experiment, we consider a group of **20 correlated agents** and **4 totally independent** agents.

Moreover, the **Group noise** is set to be greater than the **Independent noise**.



 $S_i(c_j) =$ True utility + Group noise + Independent noise

Maximum-likelihood approaches

Model Aware (MA)

Maximum Likelihood Estimator, given the noise model and the parameters of the model (Upper Bound).

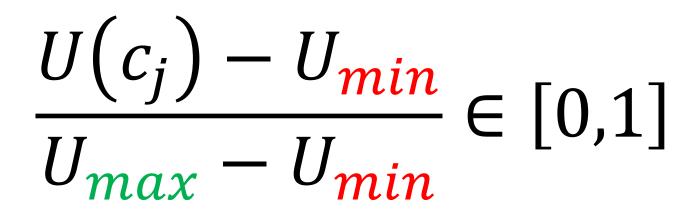
Pseudo likelihood (PL)

Maximum Likelihood Estimator, given the noise model but approximating the parameters using agents' estimates.

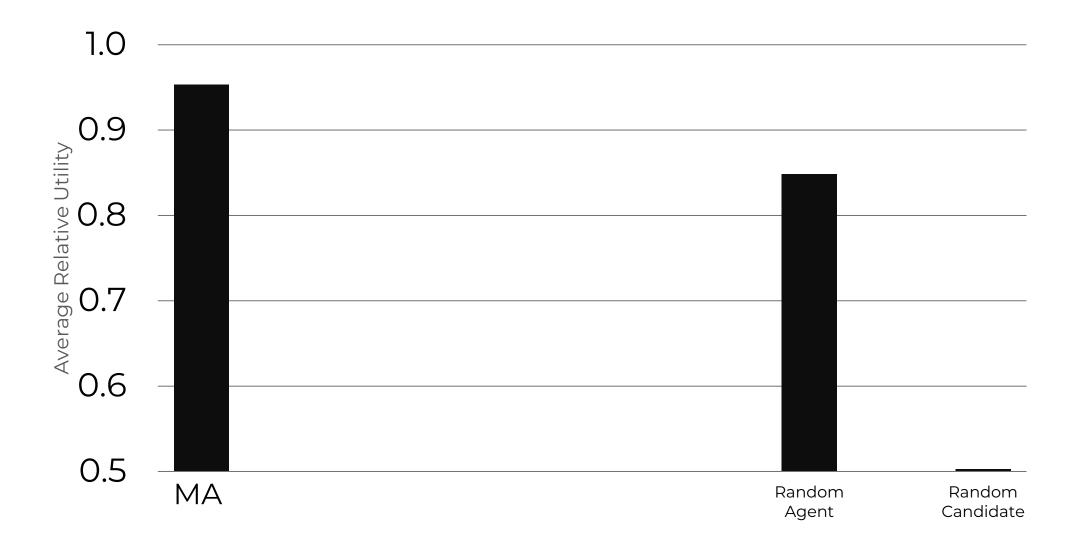
Trained Pseudo likelihood (PL+)

Using **1,000 estimates** for a better approximation of the correlations.

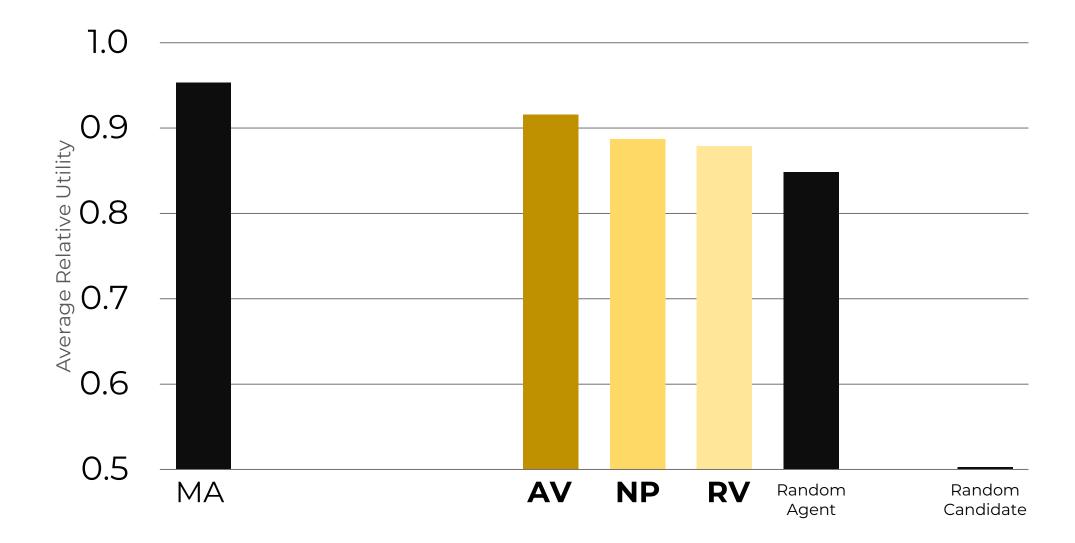
Our metric : Relative utility. (averaged over *10,000* choices)



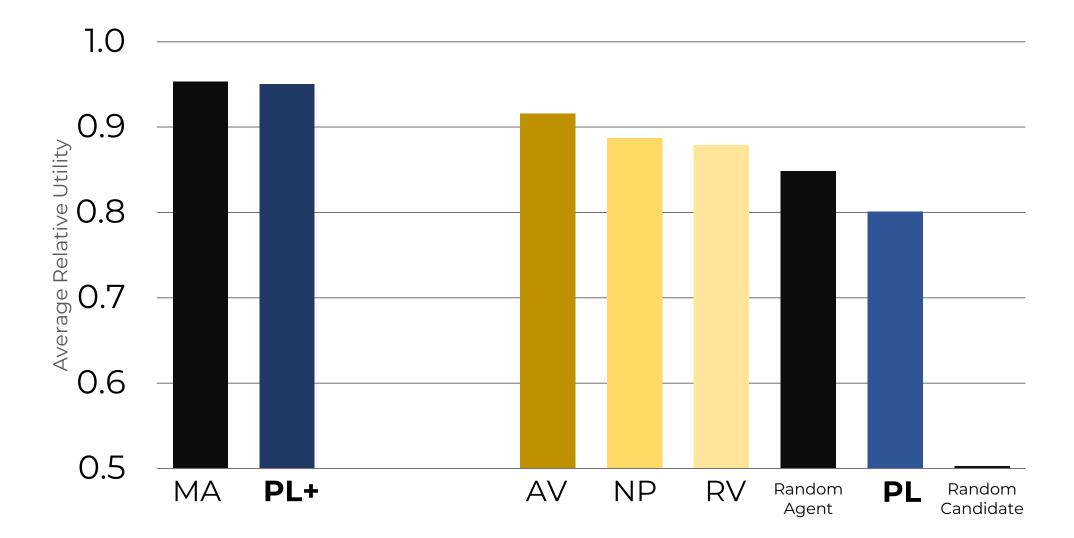
Upper and lower bounds



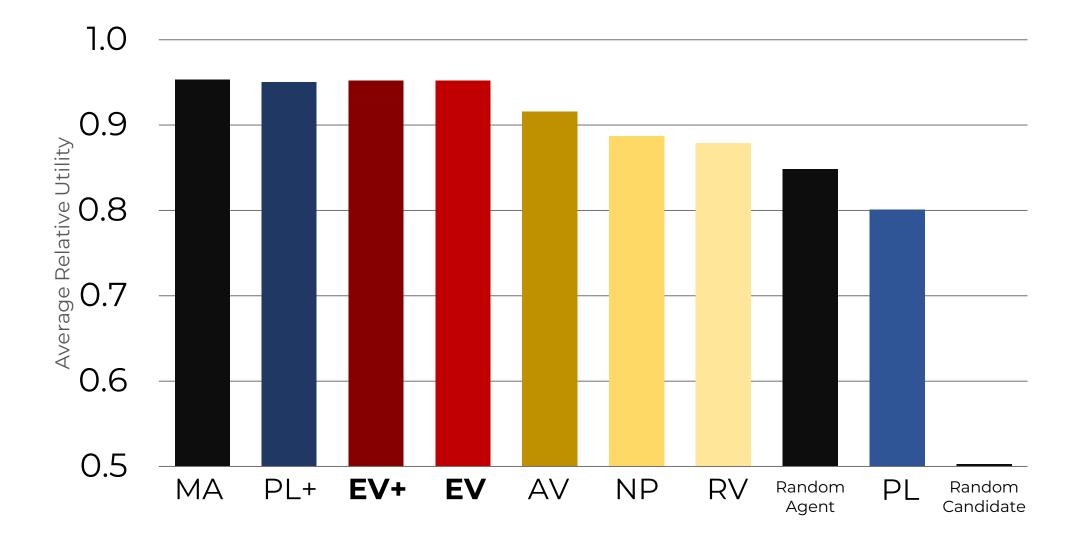
Welfare-based approaches



Pseudo-Likelihood approach

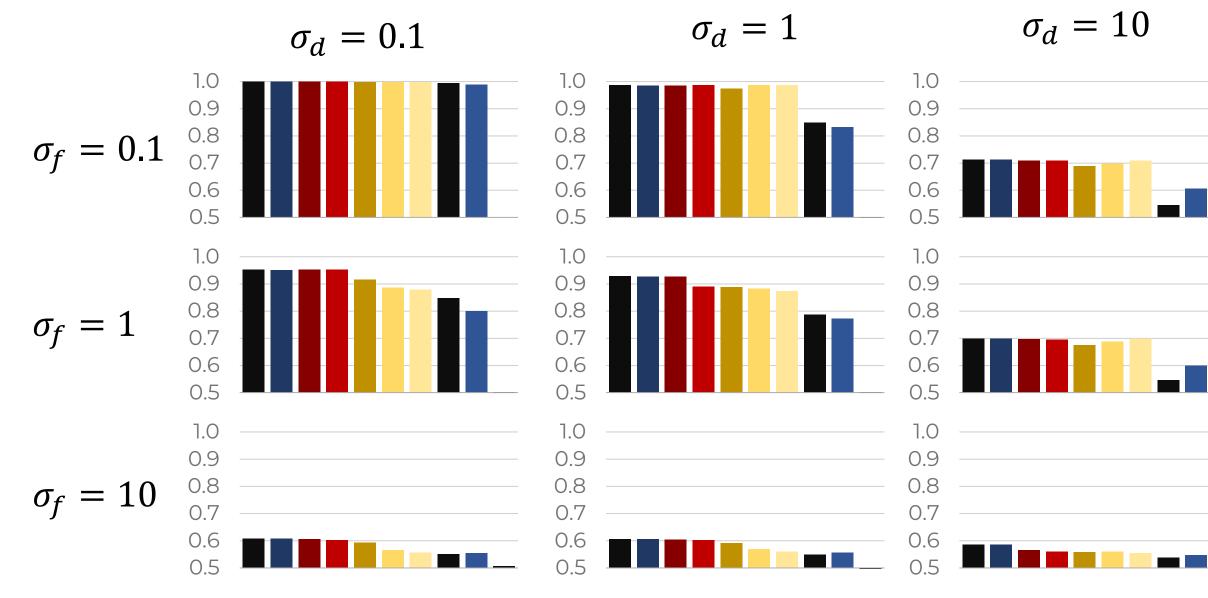


Embedded Voting

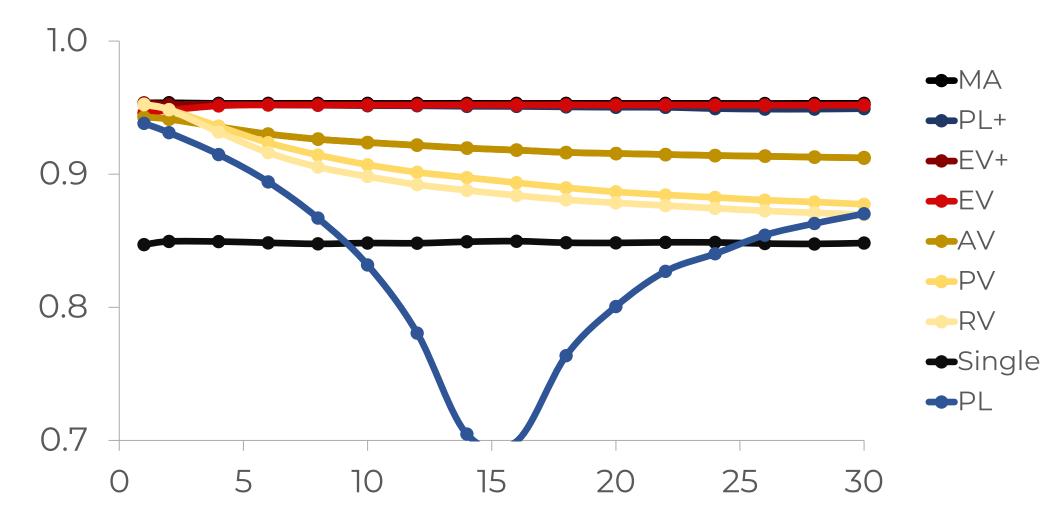


What if we vary...

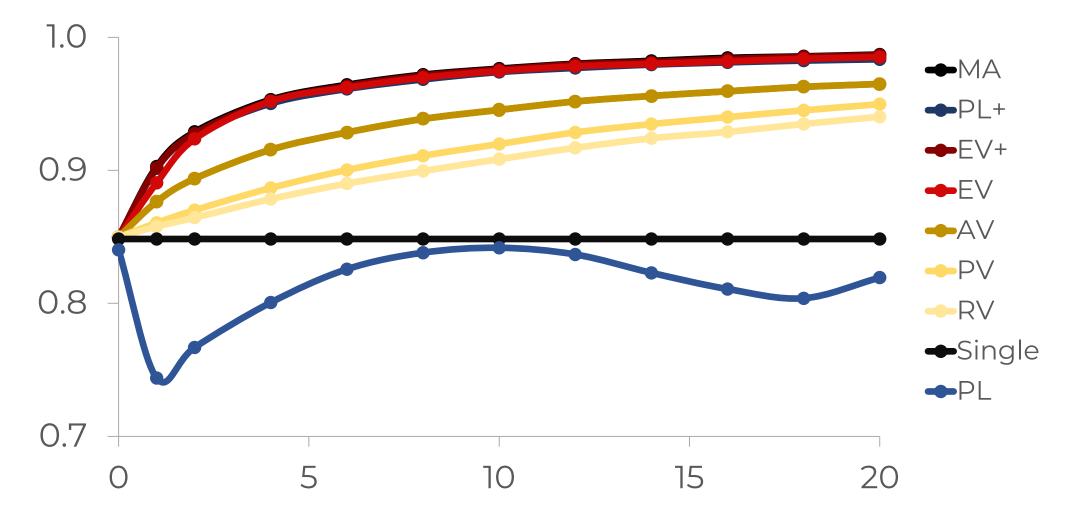
...the **noise intensities?**



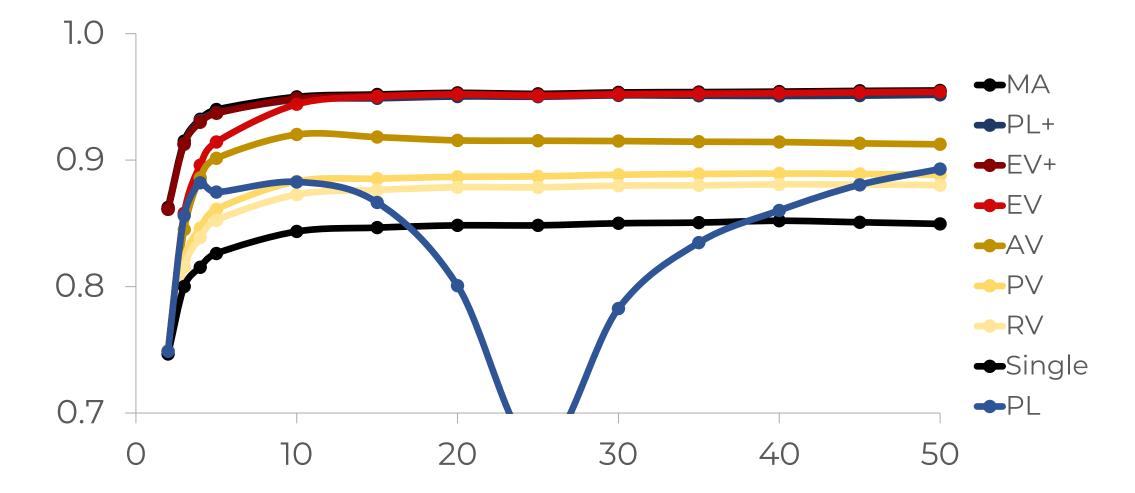
...the number of agents in the correlated group?



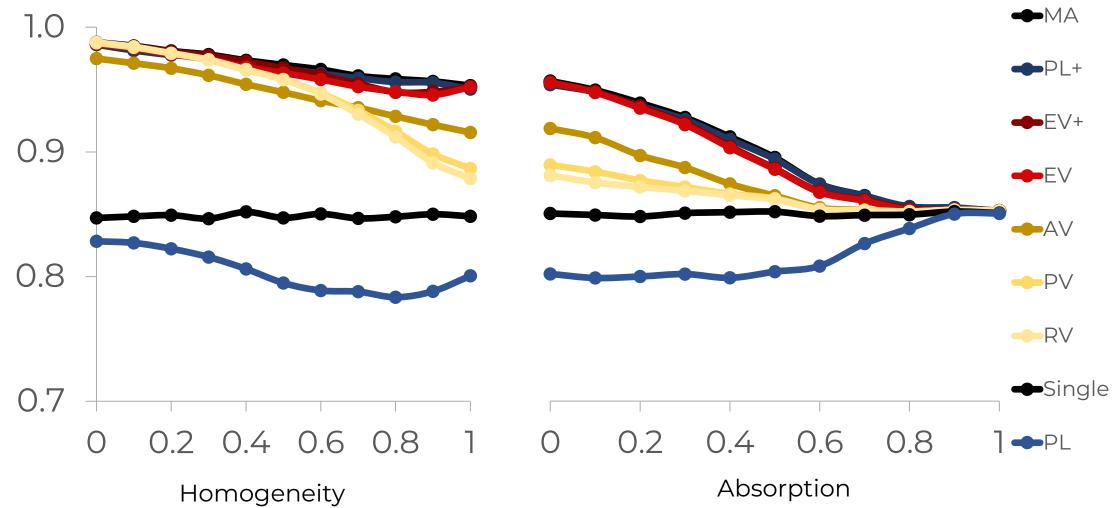
...the number of independent agents?



...the number of candidates?



And with more fluid correlations...



Conclusion

Context

Aggregating correlated agents in a **choice problem**.

Our proposal

Embedded Voting (EV), that uses SVD to embed the agents according to their estimations.

Our results

Our method **outperforms** classical ones, particularly when agents are correlated.
When a training set is available, a **maximum likelihood** approach is the best option.
If there is no such training, **Embedded Voting** should be preferred.

Thanks for your attention!

Our paper

Our python package