Approval with runoff

Théo Delemazure ${ }^{1}$ Jérôme Lang ${ }^{1}$ Jean-François Laslier ${ }^{2} \quad$ M. Remzi Sanver ${ }^{1}$
${ }^{1}$ LAMSADE, Université Paris Dauphine, PSL, CNRS ${ }^{2}$ CNRS, Paris School of Economics, PSL

Conservatoire National des Arts et Métiers - 6 Avril 2023

Single-winner election

$$
\begin{gathered}
\text { A set of voters } \mathcal{V}=\left\{v_{1}, \ldots, v_{n}\right\} \\
\text { A set of candidates } \mathcal{C}=\{\text { Ann, Bob, Carl, Dan }, \ldots\}
\end{gathered}
$$

Single-winner election

$$
\begin{gathered}
\text { A set of voters } \mathcal{V}=\left\{v_{1}, \ldots, v_{n}\right\} \\
\text { A set of candidates } \mathcal{C}=\{\text { Ann, Bob, Carl, Dan }, \ldots\} \\
\Rightarrow \text { Let's use Plurality with Runoff ! }
\end{gathered}
$$

Plurality with Runoff

First round: Voters vote for their favorite candidate (ideally)

candidates	Ann	Bob	Carl	Dan
scores	28%	30%	20%	22%

Plurality with Runoff

First round: Voters vote for their favorite candidate (ideally)

candidates	Ann	Bob	Carl	Dan
scores	28%	30%	20%	22%

\Downarrow
The two candidates with the highest scores advance to the second round
Second round: Majority vote

candidates	Ann	Bob
scores	54%	46%

Plurality with Runoff

First round: Voters vote for their favorite candidate (ideally)

candidates	Ann	Bob	Carl	Dan
scores	28%	30%	20%	22%
\Downarrow				

The two candidates with the highest scores advance to the second round
Second round: Majority vote

candidates	Ann	Bob
scores	54%	46%
\Downarrow		

Ann

Plurality with Runoff: Is it a good rule?

Monotonicity

If a candidate $a \in \mathcal{C}$ is the winner of an election, and one voter changes their vote in favor of a, then a should remain the winner.

Plurality with Runoff: Is it a good rule?

Monotonicity

If a candidate $a \in \mathcal{C}$ is the winner of an election, and one voter changes their vote in favor of a, then a should remain the winner.

candidates	Ann	Bob	Carl	Dan			
scores	26%	28%	21%	25%	\Rightarrow	candidates	Ann
:---:	:---:						
scores	Bob						
s4\%	46%						

Plurality with Runoff: Is it a good rule?

Monotonicity

If a candidate $a \in \mathcal{C}$ is the winner of an election, and one voter changes their vote in favor of a, then a should remain the winner.

candidates	Ann	Bob	Carl	Dan				
scores	26%	28%	21%	25%	\Rightarrow	candidates	Ann	Bob
:---:	:---:	:---:						
scores	54%	46%						

candidates	Ann	Bob	Carl	Dan				
scores	30%	24%	21%	25%	\Rightarrow	candidates	Ann	Dan
:---:	:---:	:---:						
scores	48%	52%						

Plurality with Runoff: Is it a good rule?

Monotonicity \Rightarrow Failed

If a candidate $a \in \mathcal{C}$ is the winner of an election, and one voter changes their vote in favor of a, then a should remain the winner.
$\left.\begin{array}{c|c|c|c|c|c|c}\text { candidates } & \text { Ann } & \text { Bob } & \text { Carl } & \text { Dan } \\ \hline \text { scores } & 26 \% & 28 \% & 21 \% & 25 \%\end{array} \Rightarrow \begin{array}{c}\text { candidates } \\ \text { Ann }\end{array}\right)$ Bob

candidates	Ann	Bob	Carl	Dan			
scores	30%	24%	21%	25%	\Rightarrow	candidates	Ann
:---:	:---:						
scores	48%						
Dan							
scor							

Monotonicity violations happen quite often in real life, for instance in 1988 during the French presidential election between Barre, Mitterrand and Chirac.

Plurality with Runoff: Is it a good rule?

Resistance to cloning

Introducing a clone of an existing candidate in the election should not change significantly the result of the election.

More formally:

- a^{\prime} is a clone of a if for all voters v_{i} and for all candidates $x \neq a, a^{\prime}$, $x \succ_{i} a \Leftrightarrow x \succ_{i} a^{\prime}$.

Let P^{\prime} be a a-clone extension of a profile P, i.e. we add a clone a^{\prime} of a. A rule f is resistant to cloning if

- for all $x \neq a, a^{\prime}, x \in f(P) \Leftrightarrow x \in f\left(P^{\prime}\right)$,
- if $a \in f(P)$, then $f\left(P^{\prime}\right) \cap\left\{a, a^{\prime}\right\} \neq \emptyset$.

Plurality with Runoff: Is it a good rule?

Resistance to cloning

Introducing a clone of an existing candidate in the election should not change significantly the result of the election.

candidates	Ann	Bob	Carl	Dan	candidates	Ann	Bob
scores	28\%	30\%	20\%	22\%	scores	54\%	46\%

Plurality with Runoff: Is it a good rule?

Resistance to cloning

Introducing a clone of an existing candidate in the election should not change significantly the result of the election.

candidates	Ann	Bob	Carl	Dan			
scores	28%	30%	20%	22%	\Rightarrow	candidates	Ann
:---:	:---:	Bob	scores				
:---:							
54%							
sco							

candidates	Ann	Bob	Bobby	Carl	Dan			
scores	28%	21%	9%	20%	22%	\Rightarrow	candidates	Ann
:---:	:---:							
Dan								
scores	48%							
52%								

Plurality with Runoff: Is it a good rule?

Resistance to cloning \Rightarrow Failed

Introducing a clone of an existing candidate in the election should not change significantly the result of the election.

candidates	Ann	Bob	Carl	Dan				
scores	28%	30%	20%	22%	\Rightarrow	candidates	Ann	Bob
:---:	:---:	:---:						
scores	54%	46%						

candidates	Ann	Bob	Bobby	Carl	Dan		
scores	28%	21%	9%	20%	22%	\Rightarrow	candidates
:---:	Ann	Dan					
:---:							
scores							
48%							
52%							

Plurality with Runoff: Is it a good rule?

Resistance to cloning \Rightarrow Failed

Introducing a clone of an existing candidate in the election should not change significantly the result of the election.

candidates	Ann	Bob	Carl	Dan				
scores	28%	30%	20%	22%	\Rightarrow	candidates	Ann	Bob
:---:	:---:	:---:						
scores	54%	46%						

candidates	Ann	Bob	Bobby	Carl	Dan			
scores	28%	21%	9%	20%	22%	\Rightarrow	candidates	Ann
:---:	:---:							
Dan								
scores	48%							
52%								

- Clone effect occurs very often in real elections, for instance during the French presidential election in 2002. There were 8 candidates from the left, so none of them went to the second round.
- It forces voters to vote "strategically" and not for their favorite candidate.

Plurality with runoff: Is it a good rule?

But plurality with runoff also fails:

- Condorcet-consistency, in a severe way: even if a candidate has a majority $\approx 1-\frac{1}{m}$ against every other candidates, it might not go to the second round.
- Participation: similar reasons as for monotonicity
- Reinforcement (because of the runoff)

Plurality with runoff: Is it a good rule?

Pareto-efficient
 If every voter prefers a to b, then b should not be a winner.

Plurality with runoff: Is it a good rule?

Pareto-efficient \Rightarrow Satisfied

If every voter prefers a to b, then b should not be a winner.

Plurality with runoff: Is it a good rule?

Pareto-efficient \Rightarrow Satisfied

If every voter prefers a to b, then b should not be a winner.

Condorcet loser criterion

A candidate who is defeated in a head-to-head competition against every other candidate should not win.

Plurality with runoff: Is it a good rule?

Pareto-efficient \Rightarrow Satisfied

If every voter prefers a to b, then b should not be a winner.

Condorcet loser criterion \Rightarrow Satisfied

A candidate who is defeated in a head-to-head competition against every other candidate should not win.

Plurality with runoff: Is it a good rule?

Pareto-efficient \Rightarrow Satisfied

If every voter prefers a to b, then b should not be a winner.

Condorcet loser criterion \Rightarrow Satisfied

 A candidate who is defeated in a head-to-head competition against every other candidate should not win.Moreover, having a runoff gives more time to voters to decide, as they only have to focus on the two finalists.

It is also a rule simple to compute and to implement as a voting protocol.

A widely used rule

All countries in purple use plurality with runoff for electing the head of state.

Everywhere in France

In France, we like this rule so much that we use it everywhere (or variants of it):

- Presidential election
- Parliament elections (districtwise)
- Party primaries
- A lot of low-stake elections

The example of the 2022 presidential election

First round was on April 10th, second round was on April 24th.

To avoid the 2002 effect, parties (and more generally sets of close candidates) have an incentive to run primaries (and again they chose to use plurality with runoff).

- Set of ecologist parties, October 2021
- First round: Five candidates
- Second round: Yannick Jadot, Sandrine Rousseau.
- Parti socialiste, October 2021
- Two candidates: Anne Hidalgo, Stéphane Le Foll.
- Les Républicains, December 2021
- First round: Five candidates
- Second round: Valérie Pécresse, Eric Ciotti.

Plurality with runoff with primaries

Can we keep the benefits of the two-round protocol without having to bear all the drawbacks of plurality in the first round?

Moreover, we do not want to change the voting system too much such that voters are more likely to understand it and accept it.
\Rightarrow What happens if we replace the plurality ballots in the first round by approval ballots?

Approval with Runoff: As a protocol

First round: Voters can approve as many candidates as they like

Approval with Runoff: As a protocol

First round: Voters can approve as many candidates as they like \Downarrow

From these approval ballots, we use an approval-based committee rule to select the two finalists

Approval with Runoff: As a protocol

First round: Voters can approve as many candidates as they like \Downarrow

From these approval ballots, we use an approval-based committee rule to select the two finalists \Downarrow

Second round: Majority vote between the two finalists

The candidate that wins the majority vote is declared winner

Approval with Runoff: The model

$\mathcal{V}=\left\{v_{1}, \ldots, v_{n}\right\}$ the set of voters
$\mathcal{C}=\left\{c_{1}, \ldots, c_{m}\right\}$ the set of candidates

Data structure of preferences:

$P=\left\langle\left(A_{1}, \succ_{1}\right), \ldots,\left(A_{n}, \succ_{n}\right)\right\rangle$ an approval-preference profile (Brams \& Sanver 2009) where each voter v_{i} is associated to an approval ballot $A_{i} \subseteq \mathcal{C}$ and a ranking \succ_{i}

We assume ballot consistency: if $x \in A_{i}$ and $y \notin A_{i}$ then $x \succ_{i} y$.
$V=\left\langle A_{1}, \ldots, A_{n}\right\rangle$ is an approval profile
$S_{V}(c)=\left|\left\{i \mid c \in A_{i}\right\}\right|$ is the approval score of c

Approval with runoff rules

F an (irresolute) 2-committee approval-based rule that takes as input an approval profile V and outputs pairs of candidates in \mathcal{C}
F^{R} an (irresolute) approval with runoff rule based on F that takes as input an approval-preference profile P and outputs winners in \mathcal{C}

- Step 1: Use F and V to select pairs of finalists,
- Step 2: Run a majority vote between the two finalists of each pair using the rankings.

Multiwinner Approval Voting

Multi-winner Approval Voting: MAV
Select the two candidates with the highest number of approvals

	Approval ballot		c	$S_{V}(c)$
$10 \times$	Bob			
$20 \times$	Ann, Bob, Carl	\Rightarrow	Ann	
$30 \times$	Ann, Bob		Bob	
20x	Carl, Dan		Carl	
$5 \times$	Dan		Dan	

Multiwinner Approval Voting

Multi-winner Approval Voting: MAV
Select the two candidates with the highest number of approvals

	Approval ballot		c	$S_{V}(\mathrm{c})$
$10 \times$	Bob			
$20 \times$	Ann, Bob, Carl	\Rightarrow	Bob	
$30 \times$	Ann, Bob		Bob	
20x	Carl, Dan		Carl	
$5 \times$	Dan		Dan	

Multiwinner Approval Voting

Multi-winner Approval Voting: MAV
Select the two candidates with the highest number of approvals

	Approval ballot		c	$S_{V}(\mathrm{c})$
$10 \times$	Bob			
$20 \times$	Ann, Bob, Carl		Ann	50
$30 \times$	Ann, Bob		Carl	60
$20 \times$	Carl, Dan		Carl	
$5 \times$	Dan		Dan	

Multiwinner Approval Voting

Multi-winner Approval Voting: MAV
Select the two candidates with the highest number of approvals

	Approval ballot		C	$S_{V}(\mathrm{c})$
$10 \times$	Bob			
20x	Ann, Bob, Carl		Ann	50
$30 \times$	Ann, Bob	\Rightarrow	Bob	60
$20 \times$	Carl, Dan		Carl	40
$5 \times$	Dan		Dan	25

Multiwinner Approval Voting

Multi-winner Approval Voting: MAV
Select the two candidates with the highest number of approvals

Multiwinner Approval Voting

Multi-winner Approval Voting: MAV
Select the two candidates with the highest number of approvals

	Approval ballot	c	$S_{V}(c)$	
$10 \times$	Bob, Bobby	Ann	50	
$20 \times$	Ann, Bob, Bobby, Carl	Bob	60	\Rightarrow \{Bob, Bobby \}
$30 \times$	Ann, Bob, Bobby	Bobby	60	
$20 \times$	Carl, Dan	Carl	40	
$5 \times$	Dan	Dan	25	

Multiwinner Approval Voting

Resistance to cloning \Rightarrow Failed
Introducing a clone of an existing candidate in the election should not change significantly the result of the election.

Multiwinner Approval Voting

Resistance to cloning \Rightarrow Failed

Introducing a clone of an existing candidate in the election should not change significantly the result of the election.

Monotonicity \Rightarrow Satisfied

If a candidate $a \in \mathcal{C}$ is the winner of an election, and one voter that did not approve a now approves him, then a should remain the winner.

Chamberlin-Courant Approval Voting

Chamberlin-Courant Approval Voting: CCAV

Select the pair of candidates that maximizes the number of voters approving at least one of them

	Approval ballot	score			
10x	Bob		Bob, Ann	60	
$20 \times$	Ann, Bob, Carl	\Rightarrow	Bob, Carl	80	\Rightarrow \{Bob, Dan $\}$
$30 \times$	Ann, Bob		Bob, Dan	85	
$20 \times$	Carl, Dan		Bob, Ban	85	
$5 \times$	Dan				

Chamberlin-Courant Approval Voting

Chamberlin-Courant Approval Voting: CCAV

Select the pair of candidates that maximizes the number of voters approving at least one of them

	Approval ballot	score		
10x	Bob, Bobby	Bob, Ann	60	
20×	Ann, Bob, Bobby, Carl	Bob, Carl	80	$\Rightarrow\{$ Bob, Dan $\}$
$30 \times$	Ann, Bob, Bobby	Bob, Dan	85	
$20 \times$	Carl, Dan	Bob, Bobby	60	
$5 \times$	Dan			

Chamberlin-Courant Approval Voting

Resistance to cloning \Rightarrow Satisfied
Introducing a clone of an existing candidate in the election should not change significantly the result of the election.

Chamberlin-Courant Approval Voting

Resistance to cloning \Rightarrow Satisfied

Introducing a clone of an existing candidate in the election should not change significantly the result of the election.

Monotonicity \Rightarrow Failed

If a candidate $a \in \mathcal{C}$ is the winner of an election, and one voter that did not approves a is now approving it, then a should remain the winner.

Impossibility theorem

Theorem

No AVR rule is resistant to cloning, monotonic.

This set of properties is minimal:

- MAV satisfies monotonicity but not resistance to cloning,
- CCAV satisfies resistance to cloning but not monotonicity

Spectrum of rules

These rules are part of the more general family of rules called $\alpha \mathrm{AV}$-rules

$$
\alpha \mathrm{AV}(V)=\operatorname{argmax}_{x, y \in \mathcal{C}} S_{V}(x)+S_{V}(y)-\alpha S_{V}(x y)
$$

$S_{V}(x)$ is the number of voters who approve x $S_{V}(x y)$ is the number of voters who approve both x and y

	MAV	PAV	CCAV	$\operatorname{MAV}(V)$	$\operatorname{argmax}_{x, y \in \mathcal{C}} S_{V}(x)+S_{V}(y)$
α	0	$\frac{1}{2}$	1		$\operatorname{argmax}_{x, y \in \mathcal{C}} S_{V}(x)+S_{V}(y)-\frac{1}{2} S_{V}(x y)$
	0	2		$\operatorname{CCAV}(V)=$	$\operatorname{argmax}_{x, y \in \mathcal{C}} S_{V}(x)+S_{V}(y)-S_{V}(x y)$

Proportional Approval Voting

Proportional Approval Voting: PAV

$$
\operatorname{PAV}(V)=\operatorname{argmax}_{x, y \in \mathcal{C}} S_{V}(x)+S_{V}(y)-\frac{1}{2} S_{V}(x y)
$$

Approval ballot

	Approval ballot			score	
$10 \times$	Bob,				
20x	Ann, Bob, Carl	\Rightarrow	Bob, Ann	$60+50-\frac{1}{2} 50=85$	\{Bob, Carl\}
$30 \times$	Ann, Bob		Bob, Carl	$60+40-\frac{1}{2} 20=90$	
$20 \times$	Carl, Dan		Bob, Dan	$60+25-0=85$	
$5 \times$	Dan				

Favorite-consistency

Chamberlin-Courant Approval Voting: CCAV

Select the pair of candidates that maximizes the number of voters approving at least one of them.

$$
\operatorname{CCAV}(V)=\operatorname{argmax}_{x, y \in \mathcal{C}} S_{V}(x)+S_{V}(y)-S_{V}(x y)
$$

Approval ballot

Approval ballot		
$10 \times$ Bob, $40 \times$ Ann, Bob $40 \times$ Ann, Carl $10 \times$ Carl\Rightarrowscore Bob, Carl 100 Ann, Bob 90$\Rightarrow\{$ Bob, Carl $\}$		
	Ann, Carl	90

But Ann is approved by 80% of voters and the others are approved by 50% of the voters each

Favorite-consistency and sequential rules

Favorite-consistency

At least one finalist is an approval winner
\Rightarrow MAV satisfies it, but not CCAV and PAV, so we use the sequential versions of these rules:

1. The first finalist x is an approval winner (i.e. it maximizes $S_{v}(x)$)
2. The second finalist y is the one that maximizes the marginal contribution score of y given that x has already been selected.
\Rightarrow Instead of looking at all possible pairs, we constrain the first finalist of the pair to be x

Sequential rules

$$
\begin{aligned}
\text { S-PAV(V): } & \operatorname{argmax}_{y \in \mathcal{C}} S_{V}(x)+S_{V}(y)-\frac{1}{2} S_{V}(x y) \\
\text { S-CCAV}(V): & \operatorname{argmax}_{y \in \mathcal{C}} S_{V}(x)+S_{V}(y)-S_{V}(x y)
\end{aligned}
$$

Sequential PAV

Select x_{1} maximizing S_{V} and $x_{2}=\operatorname{argmax}_{x} S_{V}(x)-\frac{1}{2} S_{V}\left(x_{1} x\right)$

Sequential CCAV

Select x_{1} maximizing S_{V} and $x_{2}=\operatorname{argmax}_{x} S_{V}(x)-S_{V}\left(x_{1} x\right)$
α-seqAV: Select x_{1} maximizing S_{V} and $x_{2}=\operatorname{argmax}_{x} S_{V}(x)-\alpha S_{V}\left(x_{1} x\right)$

Properties

	MAV R	$S_{-P^{2}}$	$\mathrm{~S}^{2} \mathrm{CCAV}^{R}$	PAV^{R}	CCAV^{R}
Pareto-efficiency	\checkmark	\checkmark	\checkmark^{*}	\checkmark	\checkmark^{*}
monotonicity	\checkmark				
resistance to cloning					
favorite-consistency	\checkmark		\checkmark	\checkmark	

* Depends on the tie-breaking used

Simulation with 1D Euclidean preferences

- Gaussian distribution of voters, centered at 0 and with standard deviation 1/2

- Candidates are uniformly distributed in [-1, 1]
- A voter approves candidates at distance $\leq d$ (approval radius)

Simulation with 1D Euclidean preferences

- Gaussian distribution of voters, centered at 0 and with standard deviation 1/2

- Candidates are uniformly distributed in [-1, 1]
- A voter approves candidates at distance $\leq d$ (approval radius)

Question: what are the positions of the finalists depending on the parameter α ?

Simulation with 1D Euclidean preferences

- With α-seqAV rules, the first finalist is always the closest to the center (i.e. 0), so the other finalist y maximizes $S_{V}(y)-\alpha S_{v}(0 y)$
- We depict the position of the second finalist as a function of α and d

Experiments with real data

- Datasets collected during the 2017 French presidential election (Voter Autrement 2017, Bouveret et al.) in several cities, each dataset with ~ 1000 voters and 11 candidates (with reweighed voters, so as to unbaised the dataset)
- Dataset from the online experiment Un autre vote during the 2022 French presidential election. ~ 2000 voters and 12 candidates (with reweighed voters).
- Two datasets, poster competition, collected at the Summer School on Computational Social Choice. San Sebastian 2016. Available on PrefLib, 17 candidates, ~ 60 voters per dataset.

Experiments with real data

	MAV	PAV	S-PAV	CCAV	S-CCAV
2017-Strasbourg	Lib/Left	Lib/Left	Lib/Left	Lib/Left	Lib/Left
2017-Grenoble	Soc/Lib	Lib/Left	Lib/Soc	Soc/ Cons	Soc/ Cons
2017-Crolles	Lib/Left	Lib/Left	Lib/Left	Lib/Nat	Lib/Nat
2022-Online	Grn/Left	Grn/Nat	Grn/Nat	Grn/Nat	Grn/Nat
Best-Poster-A	P. 1/P.2	P. 1/P. 4	P. 1/P. 4	P. 1/P. 6	P. 1/P. 6
Best-Poster-B	P. 1/P.2	P. 1/P. 2	P. 1/P. 2	P. 1/P. 2	P. 1/P. 2

Left Socialist Grn(Green) Liberal Conservative Nationalist

Experiments with real data: Grenoble dataset

α-seqAV rules (Soc is first)

Conclusion

Plurality with runoff:

- Many unnecessary complications such as primaries
- Massive strategic behaviour
- Hypersensitivity to cloning
- Invisibilization of "small" parties

Approval with runoff:

- Retains the idea of a two-round protocol and is very simple
- Is not one rule but a family of rules, parameterized by the $A B C$ rule chosen for determining the finalists
- We obtained axiomatic and experimental results that show that this choice actually makes a big difference

Further work

Questions:

- Will citizens understand and accept such rules especially in comparison with plurality with runoff and standard (single-winner) approval voting?
- Will there be a difference in voting behaviour under AVR rules between citizens used to runoff voting in their country and those who are not?

