Liquid Democracy with Ranked Delegations

Markus Brill ${ }^{1}$ Théo Delemazure ${ }^{2}$ Anne-Marie George ${ }^{3}$ Martin Lackner ${ }^{4}$ Ulrike Schmidt-Kraepelin¹
${ }^{1}$ TU Berlin ${ }^{2}$ Université Paris-Dauphine ${ }^{3}$ University of Oslo ${ }^{4}$ TU Wien
Liquid Democracy Workshop @ Zurich

Liquid Democracy with Ranked Delegations

Voters can delegate their vote to one other voter.

Liquid Democracy with Ranked Delegations

Implementations: LiquidFeedback, Sovereign, GoogleVotes

Voters can state a set of approved delegatees together with a ranking among them.

Voters can state a set of approved delegatees together with a ranking among them.

Voters can state a set of approved delegatees together with a ranking among them.

Delegation Rules

Input: A directed delegation graph with a rank
for every edge, and a partition of V into:

- casting voters axx : $^{\text {: no outgoing edges }}$
- delegating voters 8 : reach at least one ax_{x}
- isolated voters A: do not reach any $\mathrm{ax}_{\mathrm{ax}}$

Delegation Rules

Input: A directed delegation graph with a rank for every edge, and a partition of V into:

- casting voters axx : $^{\text {: no outgoing edges }}$
- delegating voters : reach at least one ax_{x}
- isolated voters A: do not reach any $\boldsymbol{a x}^{\boldsymbol{A}}$

Output: for each delegating voter 8 :

- a path to a casting voter ax $^{\text {. }}$

A delegation rule indirectly outputs a weight distribution over casting voters.

We introduce a simple graph-theoretical model that can capture rules and axioms studied in the literature.

We introduce a simple graph-theoretical model that can capture rules and axioms studied in the literature.

We identify a natural subclass of delegation rules, perform an extensive axiomatic analysis, and compare all studied rules empirically.

Sequence Rules

Sequence Rules

let \mathcal{S}_{v} be the set of rank sequences of paths
leading to casting voters for a delegating voter v

$$
\mathcal{S}_{V}=\{
$$

\}

Sequence Rules

let \mathcal{S}_{v} be the set of rank sequences of paths
leading to casting voters for a delegating voter v

$$
\mathcal{S}_{v}=\{(1,1,3),
$$

\}

Sequence Rules

let \mathcal{S}_{v} be the set of rank sequences of paths
leading to casting voters for a delegating voter v

Sequence Rules

let \mathcal{S}_{v} be the set of rank sequences of paths
leading to casting voters for a delegating voter v

Sequence Rules

let \mathcal{S}_{V} be the set of rank sequences of paths leading to casting voters for a delegating voter v sequence rule: outputs $\max _{\triangleright}\left\{\mathcal{S}_{v}\right\}$ for each delegating voter v, where \triangleright is an order over rank sequences

$$
\begin{aligned}
& \mathcal{S}_{v}=\{(1,1,3),(1,1,1,2), \\
&(1,1,1,1,2,3)\}
\end{aligned}
$$

Sequence Rules

Let $\triangleright_{\text {lex }}$ be the lexicographical order.

Sequence Rules

2

Let $\triangleright_{\text {lex }}$ be the lexicographical order.

- depth-first delegation: rule induced by $\triangleright_{\text {lex }}$
- breadth-first delegation: orders sequences by length, tie-breaking according to $\triangleright_{\text {lex }}$
[Kotsialou and Riley (AAMAS 2020)]

$$
\begin{aligned}
\mathcal{S}_{V}=\{ & (1,1,3),(1,1,1,2), \\
& (1,1,1,1,2,3)\}
\end{aligned}
$$

Sequence Rules

Let $\triangleright_{\text {lex }}$ be the lexicographical order.

- depth-first delegation: rule induced by \triangleright lex
- breadth-first delegation: orders sequences by length, tie-breaking according to $\triangleright_{\text {lex }}$
[Kotsialou and Riley (AAMAS 2020)]
- min-sum: orders sequences by the sum of ranks, breaks ties according to $\triangleright_{\text {lex }}$

$$
\begin{aligned}
& \mathcal{S}_{v}=\{(1,1,3),(1,1,1,2), \\
&(1,1,1,1,2,3)\}
\end{aligned}
$$

Sequence Rules

Let $\triangleright_{\text {lex }}$ be the lexicographical order.

- depth-first delegation: rule induced by $\triangleright_{\text {lex }}$
- breadth-first delegation: orders sequences by length, tie-breaking according to $\triangleright_{\text {lex }}$
[Kotsialou and Riley (AAMAS 2020)]
- min-sum: orders sequences by the sum of ranks, breaks ties according to $\triangleright_{\text {lex }}$
- leximax: $s \triangleright s^{\prime}$ iff $\sigma(s) \triangleright_{\text {lex }} \sigma\left(s^{\prime}\right)$, where σ sorts s by non-increasing ranks, e.g.,

$$
\sigma(1,1,1,2)=(2,1,1,1) \triangleright_{\operatorname{lex}}(3,1,1)=\sigma(1,1,3)
$$

$$
\begin{aligned}
\mathcal{S}_{V}=\{ & (1,1,3),(1,1,1,2), \\
& (1,1,1,1,2,3)\}
\end{aligned}
$$

Axiomatic Analysis

Confluence

Confluence: for all $\boldsymbol{2}$: all paths intersecting with $\boldsymbol{2}$ use the same outgoing edge of $\boldsymbol{2}$.

Confluence

Confluence: for all $\boldsymbol{2}$: all paths intersecting with $\boldsymbol{2}$ use the same outgoing edge of $\boldsymbol{2}$.

Confluence

2

Confluence: for all $\boldsymbol{\bullet}$: all paths intersecting with $\boldsymbol{2}$ use the same outgoing edge of $\boldsymbol{2}$.

Confluence

Confluence: for all $\boldsymbol{0}$: all paths intersecting with

- use the same outgoing edge of
- output of the delegation rule can be communicated more easily
- a single representative helps "to preserve the high level of accountability guaranteed by classical liquid democracy."
[Gölz et al., WINE 2018]

Confluence

Confluence: for all $\boldsymbol{8}$: all paths intersecting with
use the same outgoing edge of $\boldsymbol{2}$.

Theorem

Building upon a characterization of orders \triangleright that induce confluent sequence rules, we show:

- breadth-first delegation, min-sum, diffusion, and leximax are confluent

- depth-first delegation is not confluent

Copy-robustness

Copy-robustness: A delegating voter $\boldsymbol{8}$ has a direct path to its casting voter $\boldsymbol{0}^{*}$. If becomes a casting voter, the joint voting power of $\boldsymbol{\bullet} \boldsymbol{\bullet}$ remains equal. [Behrens \& Swierczek (LDJ, 2015)]

Situation 1:

Situation 2
 49_{x}^{12}

Copy-robustness

Copy-robustness: A delegating voter $\boldsymbol{2}$ has a direct path to its casting voter \boldsymbol{e}^{*}. If $\boldsymbol{\theta}$ becomes a casting voter, the joint voting power of \& $\&$ remains equal. [Behrens \& Swierczek (LDJ, 2015)]

Situation 1:

Situation 2

Impossibility Theorem

No sequence rule is both confluent and copy-robust. Hence, breadth-first delegation, min-sum, diffusion, and leximax are not copy-robust.

Copy-robustness

Copy-robustness: A delegating voter 2
Situation 1: has a direct path to its casting voter e^{*}. If becomes a casting voter, the joint voting power of \& $\boldsymbol{\&} \times$ remains equal. [Behrens \& Swierczek (LDJ, 2015)]

Impossibility Theorem

No sequence rule is both confluent and copy-robust. Hence, breadth-first delegation, min-sum, diffusion, and leximax are not copy-robust.

Characterization of DFS

Depth-first delegation is the only sequence rule that is copy-robust and satisfies weak lexicographical tie-breaking.

Can we obtain confluence and copy-robustness by going beyond sequence rules?

Branching Rules

Branching rules

C-branching: Acyclic subgraph such that all delegating voters $\boldsymbol{\Delta}$ have exactly one outgoing edge.

Branching rules

C-branching: Acyclic subgraph such that all delegating voters have exactly one outgoing edge.

Branching rules select delegations on a global level while Sequence rules select delegations for each voter 2

Branching rules

C-branching: Acyclic subgraph such that all delegating voters have exactly one outgoing edge.

Branching rules select delegations on a global level while Sequence rules select delegations for each voter 2

Borda branching: Select a C-branching B that minimizes the total sum of ranks

Branching rules

C-branching: Acyclic subgraph such that all delegating voters have exactly one outgoing edge.

Branching rules select delegations on a global level while Sequence rules select delegations for each voter 2

Borda branching: Select a C-branching B that minimizes the total sum of ranks

Theorem

Borda branching (with an appropriate tie-breaking rule) satisfies confluence and copy-robustness.

Pairwise majority comparisons:

$$
\begin{aligned}
\Delta\left(B_{1}, B_{2}\right):= & \# \text { nodes in favor of } B_{1} \\
& -\# \text { nodes in favor of } B_{2}
\end{aligned}
$$

Pairwise majority comparisons:

$$
\begin{aligned}
\Delta\left(B_{1}, B_{2}\right):= & \# \text { nodes in favor of } B_{1} \\
& -\# \text { nodes in favor of } B_{2}
\end{aligned}
$$

Pairwise majority comparisons:

$$
\begin{aligned}
\Delta\left(B_{1}, B_{2}\right):= & \# \text { nodes in favor of } B_{1} \\
& -\# \text { nodes in favor of } B_{2}
\end{aligned}
$$

Popular Branchings [Kavitha et al. (Math. Prog., 2021)]

Pairwise majority comparisons:
$\Delta\left(B_{1}, B_{2}\right):=\quad \#$ nodes in favor of B_{1}

- \# nodes in favor of B_{2}

Unpopularity margin:

$$
\text { unpopularity }(B):=\max _{B^{\prime}}\left(\Delta\left(B^{\prime}, B\right)\right)
$$

Theorem

A popular branching, i.e., a branching with unpopularity $=0$ does not always exist.

Empirical Results

Data generation

- Prominence-based method (following the preferential attachment principle): the highest your in-degree in the network, the more likely you are to receive delegations.
- Friendship-based method (following the small world principle): the more you have common friends with someone, the most likely you are to receive its delegation.

For each method, we used both generated data and real data. Here, I will only show the results for experiments on two real datasets:

dataset	method	nodes	edges	avg degree
Twitter	Prominance-based	456 K	$14,8 \mathrm{M}$	65
Facebook	Friendship-based	63 K	817 K	26

Impact of backup delegation on abstention rate

Abstention rate (Facebook dataset)
On the classic liquid democracy setting, each voter can delegates to at most one voter. This cause the issue of delegation cycles and lost ballots.

With ranked delegation, we achieve far better participation rate, even when only 1% of all voters are actually voting.

Results

Twitter dataset $(n=456626)$	Unpop.	AvgRank	AvgLen	MaxWeight
Breadth-first	223746	3.4	1.16	27397
MinSum	105023	1.37	1.89	31963
Leximax	13699	1.04	5.59	118722
BordaBranching	16	1.0	6.0	132421
Depth-first			6.05	127855

Facebook dataset $(n=63731)$	Unpop.	AvgRank	AvgLen	MaxWeight
Breadth-first	28678	3.29	1.27	162
MinSum	12746	1.35	2.04	224
Leximax	2567	1.08	3.97	539
BordaBranching	12	1.03	4.79	748
Depth-first			5.0	713

MaxWeight: Maximum accumulated voting weight of a casting voter. Mechanism avoiding super voters were studied by Gölz et al. (WINE, 2018).

Unpopularity: Worst-case majority comparison [Kavitha et al. (Math. Prog. 2021)]

Results

Twitter dataset $(n=456626)$	Unpop.	AvgRank	AvgLen	MaxWeight
Breadth-first	223746	3.4	1.16	27397
MinSum	105023	1.37	1.89	31963
Leximax	13699	1.04	5.59	118722
BordaBranching	16	1.0	6.0	132421
Depth-first			6.05	127855

Facebook dataset $(n=63731)$	Unpop.	AvgRank	AvgLen	MaxWeight
Breadth-first	28678	3.29	1.27	162
MinSum	12746	1.35	2.04	224
Leximax	2567	1.08	3.97	539
BordaBranching	12	1.03	4.79	748
Depth-first			5.0	713

MaxWeight: Maximum accumulated voting weight of a casting voter. Mechanism avoiding super voters were studied by Gölz et al. (WINE, 2018).

Unpopularity: Worst-case majority comparison [Kavitha et al. (Math. Prog. 2021)]

Observations

- trade-off between minimizing unpopularity and maximum weight
- delegation rules can be aligned on a spectrum

Summary

Summary

In this talk:

- introduction of a simple graph-theoretical model
- formalization of the class of sequence rules
- impossibility result for copy-robust and confluent sequence rules
- Borda branching satisfies copy-robustness and confluence
- characterization of depth-first delegation via copy-robustness

Summary

In this talk:

- introduction of a simple graph-theoretical model
- formalization of the class of sequence rules
- impossibility result for copy-robust and confluent sequence rules
- Borda branching satisfies copy-robustness and confluence
- characterization of depth-first delegation via copy-robustness

Not mentioned in this talk:

- characterization of breadth-first delegation via confluence
- a generalization of a result by Kotsialou and Riley (AAMAS 2020) implying that almost all studied sequence rules satisfy guru participation
- Borda branching satisfies guru participation
- a proof that diffusion is a sequence rule by uncovering its respective order
- more experiments !

Thanks

Thanks for your attention!

Network

Bonus: The distance-based method

Bonus: The distance-based method

Bonus: The distance-based method

