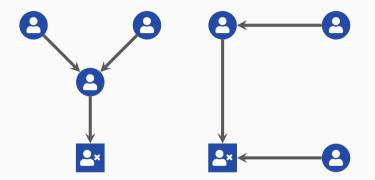
Markus Brill¹ <u>Théo Delemazure</u>² Anne-Marie George³ Martin Lackner⁴ Ulrike Schmidt-Kraepelin¹

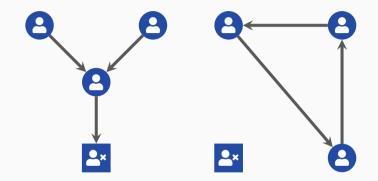
¹TU Berlin ²Université Paris-Dauphine ³University of Oslo ⁴TU Wien

Formal Model of Democracy

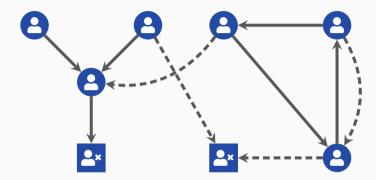


Voters can delegate their vote to **one** other voter.

Implementations: LiquidFeedback, Sovereign, GoogleVotes

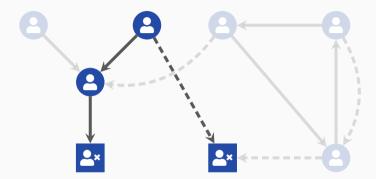


Implementations: LiquidFeedback, Sovereign, GoogleVotes



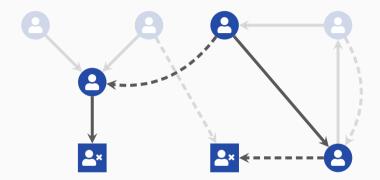
Voters can state a set of approved delegates together with a ranking among them.

Implementations: LiquidFeedback, Sovereign, GoogleVotes



Voters can state a set of approved delegates together with a ranking among them.

Implementations: LiquidFeedback, Sovereign, GoogleVotes



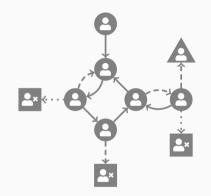
Voters can state a set of approved delegates together with a ranking among them.

Implementations: LiquidFeedback, Sovereign, GoogleVotes

Delegation Rules

Input: A directed delegation graph with a **rank** for every edge, and a partition of *V* into:

- casting voters 💵 : no outgoing edges
- delegating voters 🕑 : reach at least one 🛃
- isolated voters 🛕: do not reach any 💵



Delegation Rules

Input: A directed delegation graph with a **rank** for every edge, and a partition of *V* into:

- casting voters 🔤 : no outgoing edges
- delegating voters 🕑 : reach at least one 🛃
- isolated voters 🛕: do not reach any 💵

Output: for each delegating voter (2):

• a path to a casting voter 🛃

A delegation rule indirectly outputs a **weight distribution** over casting voters.

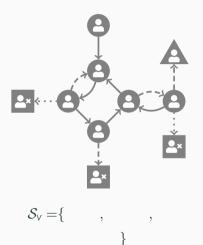
We introduce a simple **graph-theoretical model** that can capture **rules** and **axioms** studied in the literature.

We introduce a simple **graph-theoretical model** that can capture **rules** and **axioms** studied in the literature.

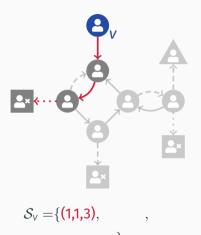
We identify a natural **subclass** of delegation rules, perform an extensive **axiomatic analysis**, and compare all studied rules **empirically**.

Sequence Rules

let \mathcal{S}_{v} be the set of rank sequences of paths leading to casting voters for a delegating voter v



let \mathcal{S}_{v} be the set of rank sequences of paths leading to casting voters for a delegating voter v



let \mathcal{S}_{v} be the set of rank sequences of paths leading to casting voters for a delegating voter \boldsymbol{v}

 $S_{v} = \{$ **(1,1,3)**, **(1,1,1,2)**, $\}$

let \mathcal{S}_{v} be the set of rank sequences of paths leading to casting voters for a delegating voter v

let \mathcal{S}_v be the set of **rank sequences** of paths leading to casting voters for a delegating voter v

sequence rule: outputs $\max_{\triangleright} \{S_v\}$ for each delegating voter *v*, where \triangleright is an order over rank sequences

Let \triangleright_{lex} be the lexicographical order.

Let \triangleright_{lex} be the lexicographical order.

- depth-first delegation: rule induced by ⊳_{lex}
- breadth-first delegation: orders sequences by length, tie-breaking according to ▷_{lex}

[Kotsialou and Riley (AAMAS 2020)]

 $\mathcal{S}_{v} = \{ (1,1,3), (1,1,1,2), \\ (1,1,1,1,2,3) \}$

Let \triangleright_{lex} be the lexicographical order.

- depth-first delegation: rule induced by ⊳_{lex}
- breadth-first delegation: orders sequences by length, tie-breaking according to ▷_{lex}

[Kotsialou and Riley (AAMAS 2020)]

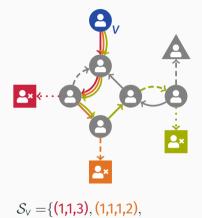
 min-sum: orders sequences by the sum of ranks, breaks ties according to ▷_{lex}

Let \triangleright_{lex} be the lexicographical order.

- depth-first delegation: rule induced by ⊳_{lex}
- breadth-first delegation: orders sequences by length, tie-breaking according to Plex

[Kotsialou and Riley (AAMAS 2020)]

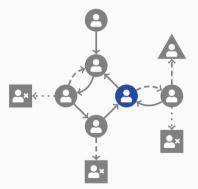
- min-sum: orders sequences by the sum of ranks, breaks ties according to ▷_{lex}
- leximax: $s \triangleright s'$ iff $\sigma(s) \triangleright_{\text{lex}} \sigma(s')$, where σ sorts s by non-increasing ranks, e.g., $\sigma(1, 1, 1, 2) = (2, 1, 1, 1) \triangleright_{\text{lex}} (3, 1, 1) = \sigma(1, 1, 3)$



(1,1,1,1,2,3)

Axiomatic Analysis

Confluence: for all **a**: all paths intersecting with **a** use the same outgoing edge of **a**.



Confluence: for all **a**: all paths intersecting with **a** use the same outgoing edge of **a**.

Confluence: for all **a**: all paths intersecting with **a** use the same outgoing edge of **a**.

Confluence: for all **L**: all paths intersecting with

 \blacksquare use the same outgoing edge of \blacksquare .

- output of the delegation rule can be communicated more easily
- a single representative helps "to preserve the high level of accountability guaranteed by classical liquid democracy."

[Gölz et al., WINE 2018]

Confluence

Confluence: for all **a**: all paths intersecting with **a** use the same outgoing edge of **a**.

Theorem

Building upon a **characterization** of orders *>* that induce **confluent** sequence rules, we show:

- breadth-first delegation, min-sum, diffusion, and leximax are confluent
- depth-first delegation is not confluent

Copy-robustness

Copy-robustness: A delegating voter A has a direct path to its casting voter *. If becomes a casting voter, the joint voting power of & & * remains equal. [Behrens & Swierczek (LDJ, 2015)]

Copy-robustness

Copy-robustness: A delegating voter A has a direct path to its casting voter *. If becomes a casting voter, the joint voting power of & & * remains equal. [Behrens & Swierczek (LDJ, 2015)]

Impossibility Theorem

No sequence rule is both **confluent** and **copy-robust**. Hence, **breadth-first delegation**, **min-sum**, **diffusion**, and **leximax** are not copy-robust.

Copy-robustness

Copy-robustness: A delegating voter A has a direct path to its casting voter *. If becomes a casting voter, the joint voting power of & & * remains equal. [Behrens & Swierczek (LDJ, 2015)]

Impossibility Theorem

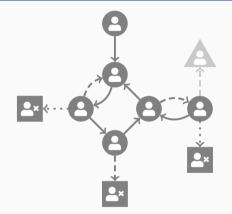
No sequence rule is both **confluent** and **copy-robust**. Hence, **breadth-first delegation**, **min-sum**, **diffusion**, and **leximax** are not copy-robust.

Characterization

Depth-first delegation is the only **sequence rule** that is **copy-robust** and satisfies **weak lexicographical tie-breaking**.

Can we obtain **confluence** and **copy-robustness** by going **beyond** sequence rules?

C-branching: Acyclic subgraph such that all delegating voters **A** have **exactly one** outgoing edge.



C-branching: Acyclic subgraph such that all delegating voters **A** have **exactly one** outgoing edge.

Branching rules select delegations on a global level while **Sequence rules** select delegations for each voter

C-branching: Acyclic subgraph such that all delegating voters **A** have **exactly one** outgoing edge.

Branching rules select delegations on a global level while **Sequence rules** select delegations for each voter

Borda branching: Select a *C*-branching *B* that minimizes the total sum of ranks

C-branching: Acyclic subgraph such that all delegating voters **A** have **exactly one** outgoing edge.

Branching rules select delegations on a global level while **Sequence rules** select delegations for each voter

Borda branching: Select a *C*-branching *B* that minimizes the total sum of ranks

Theorem

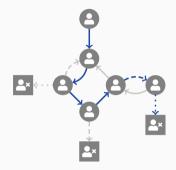
Borda branching (with an appropriate tie-breaking rule) satisfies **confluence** and **copy-robustness**.

Popular Branchings [Kavitha et al. (Math. Prog., 2021)]

Pairwise majority comparisons:

 $\Delta(B_1, B_2) :=$ # nodes in favor of B_1

- # nodes in favor of B_2



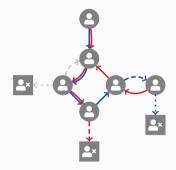
3

Popular Branchings [Kavitha et al. (Math. Prog., 2021)]

Pairwise majority comparisons:

 $\Delta(B_1, B_2) :=$ # nodes in favor of B_1

- # nodes in favor of B_2



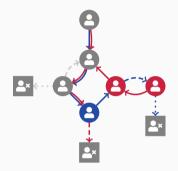
3

Popular Branchings [Kavitha et al. (Math. Prog., 2021)]

Pairwise majority comparisons:

 $\Delta(B_1, B_2) :=$ # nodes in favor of B_1

- # nodes in favor of B_2



1

3

Popular Branchings [Kavitha et al. (Math. Prog., 2021)]

Pairwise majority comparisons:

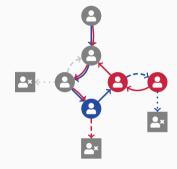
 $\Delta(B_1, B_2) := # \text{ nodes in favor of } B_1$ - # nodes in favor of B_2

Unpopularity margin:

unpopularity(B) := $\max_{B'}(\Delta(B', B))$

Theorem

A **popular branching**, i.e., a branching with unpopularity = 0 does not always exist.

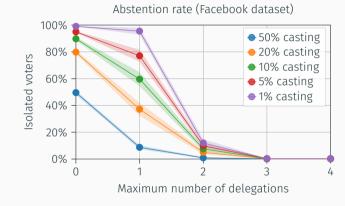


Empirical Results

Impact of backup delegation on abstention rate

On the classic liquid democracy setting, each voter can delegates to **at most one voter**. This cause the issue of **delegation cycles** and **lost ballots**.

With ranked delegation, we achieve **far better participation rate**, even when only 1% of all voters are actually voting.



Results

Twitter dataset	Unpop.	AvgRank	AvgLen	MaxWeight	Facebook dataset	Unpop.	AvgRank	AvgLen	MaxWeight
(n = 456626)					(n = 63731)				
Breadth-first	223746	3.4	1.16	27397	Breadth-first	28678	3.29	1.27	162
MinSum	105023	1.37	1.89	31963	MinSum	12746	1.35	2.04	224
Leximax	13699	1.04	5.59	118722	Leximax	2567	1.08	3.97	539
BordaBranching	16	1.0	6.0	132421	BordaBranching	12	1.03	4.79	748
Depth-first			6.05	127855	Depth-first			5.0	713

MaxWeight: Maximum accumulated voting weight of a casting voter. Mechanism avoiding **super voters** were studied by Gölz et al. (WINE, 2018).

Unpopularity: Worst-case majority comparison [Kavitha et al. (Math. Prog. 2021)]

Results

Twitter dataset	Unpop.	AvgRank	AvgLen	MaxWeight	Facebook dataset	Unpop.	AvgRank	AvgLen	MaxWeight
(n = 456626)					(n = 63731)				
Breadth-first	223746	3.4	1.16	27397	Breadth-first	28678	3.29	1.27	162
MinSum	105023	1.37	1.89	31963	MinSum	12746	1.35	2.04	224
Leximax	13699	1.04	5.59	118722	Leximax	2567	1.08	3.97	539
BordaBranching	16	1.0	6.0	132421	BordaBranching	12	1.03	4.79	748
Depth-first			6.05	127855	Depth-first			5.0	713

MaxWeight: Maximum accumulated voting weight of a casting voter. Mechanism avoiding **super voters** were studied by Gölz et al. (WINE, 2018).

Unpopularity: Worst-case majority comparison [Kavitha et al. (Math. Prog. 2021)]

Observations

- trade-off between minimizing unpopularity and maximum weight
- $\cdot\,$ delegation rules can be aligned on a spectrum
- leximax outperforms diffusion on all metrics

Summary

Summary

In this talk:

- introduction of a simple graph-theoretical model
- formalization of the class of sequence rules
- impossibility result for copy-robust and confluent sequence rules
- Borda branching satisfies copy-robustness and confluence
- characterization of depth-first delegation via copy-robustness

Summary

In this talk:

- introduction of a simple graph-theoretical model
- $\cdot\,$ formalization of the class of sequence rules
- impossibility result for copy-robust and confluent sequence rules
- Borda branching satisfies copy-robustness and confluence
- characterization of depth-first delegation via copy-robustness

Not mentioned in this talk:

- a **generalization** of a result by Kotsialou and Riley (AAMAS 2020) implying that almost all studied sequence rules satisfy **guru participation**
- Borda branching satisfies guru participation
- an axiomatic characterization of breadth-first delegation
- \cdot a proof that diffusion is a sequence rule by uncovering its respective order

Thanks for your attention !

