Approval with Runoff

<u>Théo Delemazure</u>¹ Jérôme Lang¹ Jean-François Laslier² M. Remzi Sanver¹ ¹LAMSADE, Université Paris Dauphine, PSL, CNRS ²CNRS, Paris School of Economics, PSL

IJCAI 2022

A set of voters $\mathcal{V} = \{v_1, \ldots, v_n\}$

A set of candidates $C = \{Ann, Bob, Carl, Dan, ...\}$

1

A set of voters $\mathcal{V} = \{v_1, \dots, v_n\}$

A set of candidates $C = \{Ann, Bob, Carl, Dan, ...\}$

 \Rightarrow Let's use **Plurality with Runoff**!

1

Plurality with Runoff

First round: Voters vote for their favorite candidate

candidates	Ann	Bob	Carl	Dan
scores	28%	30%	20%	22%

First round: Voters vote for their favorite candidate

candidates	Ann	Bob	Carl	Dan				
scores	28%	30%	20%	22%				
\downarrow								

The two candidates with the highest scores advance to the second round

Second round: Majority vote

candidates	Ann	Bob
scores	54%	46%

First round: Voters vote for their favorite candidate

candidates	Ann	Bob	Carl	Dan				
scores	28%	30%	20%	22%				
\downarrow								

The two candidates with the highest scores advance to the second round

Second round: Majority vote

candidates	Ann	Bob						
scores	54%	46%						
\downarrow								
٨٣								

Monotonicity

If a candidate $a \in C$ is the winner of an election, and one voter changes his vote in favor of a, then a should remain the winner.

Monotonicity \Rightarrow Failed

If a candidate $a \in C$ is the winner of an election, and one voter changes his vote in favor of a, then a should remain the winner.

$Monotonicity \Rightarrow \textbf{Failed}$

If a candidate $a \in C$ is the winner of an election, and one voter changes his vote in favor of a, then a should remain the winner.

Resistance to cloning

Introducing a clone of an existing candidate in the election should not change significantly the result of the election.

candidates	Ann	Bob	Carl	Dan	\rightarrow	candidates	Ann	Bob
scores	28%	30%	20%	22%	~ ~	scores	54%	46%

$Monotonicity \Rightarrow \textbf{Failed}$

If a candidate $a \in C$ is the winner of an election, and one voter changes his vote in favor of a, then a should remain the winner.

Resistance to cloning \Rightarrow Failed

Introducing a clone of an existing candidate in the election should not change significantly the result of the election.

candidates	Ann	Bob	Bobby	Carl	Dan	candidates	Ann	Dan
scores	28%	21%	9%	20%	22%	scores	48%	52%

• Happens quite often, e.g. French presidential election in 2002.

$Monotonicity \Rightarrow \textbf{Failed}$

If a candidate $a \in C$ is the winner of an election, and one voter changes his vote in favor of a, then a should remain the winner.

Resistance to cloning \Rightarrow Failed

Introducing a clone of an existing candidate in the election should not change significantly the result of the election.

candidates	Ann	Bob	Bobby	Carl	Dan	candidates	Ann	Dan
scores	28%	21%	9%	20%	22%	scores	48%	52%

• Happens quite often, e.g. French presidential election in 2002.

But also participation, Condorcet-consistency and reinforcement

Condorcet loser criterion \Rightarrow Satisfied

A candidate who can be defeated in a head-to-head competition against every other candidate should not win.

Moreover, having a runoff give more time to voters to decide, as they only have to focus on the two finalists.

It is also a rule **simple to compute and to implement** as a voting protocol.

Can we keep **the benefits of the two-round protocol** without having to bear all the **drawbacks of plurality** in the first round?

⇒ What happens if we replace the plurality ballots in the first round by approval ballots?

First round: Voters can approve as many candidates as they like

First round: Voters can approve as many candidates as they like

11

From these approval ballots, we use an **approval-based committee rule** to select the two finalists

First round: Voters can approve as many candidates as they like

11

From these approval ballots, we use an **approval-based committee rule** to select the two finalists

Second round: Majority vote between the two finalists

11

 $P = \langle (A_1, \succ_1), \dots, (A_n, \succ_n) \rangle$ an **approval-preference profile** where each voter v_i is associated to an **approval ballot** $A_i \subseteq C$ and a **ranking** \succ_i

 $V = \langle A_1, \dots, A_n \rangle$ an **approval profile**

 $S_V(c) = |\{i | c \in A_i\}|$ is the **approval score** of c

F an (irresolute) **2-committee approval-based rule** that takes as input an approval profile *V* and outputs a pair of candidates in C

 F^R an (irresolute) **approval with runoff rule** based on F that takes as input an approval-preference profile P and outputs a winner in C

Multi-winner Approval Voting: MAV

Select the two candidates with the highest number of approvals

Multi-winner Approval Voting: MAV

Select the two candidates with the highest number of approvals

Resistance to cloning \Rightarrow Failed

Introducing a clone of an existing candidate in the election should not change significantly the result of the election.

Monotonicity \Rightarrow Satisfied

If a candidate $a \in C$ is the winner of an election, and one voter that did not approve *a* now approves him, then *a* should remain the winner.

Chamberlin-Courant Approval Voting: CCAV

Select the pair of candidates that maximizes the number of voters approving at least one of them

	Approval hallot]				
	Αρριοναι σαιιοι			score		
10	Bob					
20	App Bob Carl		Bob, Ann	60		
20	Ann, BOD, Cart		\rightarrow	\rightarrow	Bob Carl	80
30	Ann. Bob		DOD, Cart	00		
				Bob, Dan	85	
20	Carl, Dan					
5	Dan	1	•••	•••		
0	Dan					

Chamberlin-Courant Approval Voting: CCAV

Select the pair of candidates that maximizes the number of voters approving at least one of them

	Approval ballot]		score	
10	Bob, Bobby]	Bob, Ann	60	
20	Ann, Bob, Bobby, Carl		Bob, Carl	80	\rightarrow (Rob Dan)
30	Ann, Bob, Bobby		Bob, Dan	85	$\Rightarrow \{\mathbf{D}\mathbf{O}\mathbf{D}, \mathbf{D}\mathbf{a}\mathbf{n}\}$
20	Carl, Dan]	Bob, Bobby	60	
5	Dan]			-

Resistance to cloning \Rightarrow Satisfied

Introducing a clone of an existing candidate in the election should not change significantly the result of the election.

Monotonicity \Rightarrow Failed

If a candidate $a \in C$ is the winner of an election, and one voter that did not approves a is now approving it, then a should remain the winner.

Resistance to cloning \Rightarrow Satisfied

Introducing a clone of an existing candidate in the election should not change significantly the result of the election.

Monotonicity \Rightarrow Failed

If a candidate $a \in C$ is the winner of an election, and one voter that did not approves a is now approving it, then a should remain the winner.

Theorem

No neutral AVR rule is resistant to cloning and monotonic

These rules are part of the more general family of α AV-rules

 $\begin{aligned} \alpha \mathsf{AV}(V) &= \mathsf{argmax}_{x,y \in \mathcal{C}} \ \mathsf{S}_V(x) + \mathsf{S}_V(y) - \alpha \mathsf{S}_V(xy) \\ \mathsf{S}_V(x) \text{ is the number of voters who approve } x \\ \mathsf{S}_V(xy) \text{ is the number of voters who approve both } x \text{ and } y \end{aligned}$

	MAV	PAV	CCAV
α	0	$\frac{1}{2}$	1

Chamberlin-Courant Approval Voting: CCAV

Select the pair of candidates that maximizes the number of voters approving at least one of them

But Ann is approved by 80% of voters and the others are approved by 50% of the voters each

Favorite-consistency

At least one finalist is an approval winner

 \Rightarrow MAV satisfies it, but not CCAV and PAV, so we defined sequential versions of these rules:

- 1. The first finalist x is an approval winner (i.e. it maximizes $S_v(x)$)
- 2. The second finalist *y* is the one that maximizes the score when paired with *x*:
- \Rightarrow Instead of looking at all possible pairs, we constrain the first finalist of the pair to be x

	MAV ^R	S-PAV ^R	S-CCAV ^R	PAV ^R	CCAV ^R
Pareto-efficiency	\checkmark	\checkmark	✓*	\checkmark	✓*
monotonic	\checkmark				
resistant to cloning			\checkmark		\checkmark
favorite-consistency	\checkmark	\checkmark	\checkmark		

* Depends on the tie-breaking used

Experiments with real data

- Datasets collected during the 2017 French presidential election in several cities, each dataset with \sim 1000 voters and 11 candidates
- Two datasets, poster competition, collected at the Summer School on Computational Social Choice. 17 candidates, \sim 60 voters per dataset.

	MAV	PAV	S-PAV	CCAV	S-CCAV
2017-Strasbourg	Lib/ Left				
2017-Grenoble	Soc/ Lib	Lib/ Left	Lib/Soc	Soc/ Cons	Soc/ Cons
2017-Crolles	Lib/ Left	Lib/ Left	Lib/ Left	Lib/ Nat	Lib/ Nat
Best-Poster-A	P. 1/P. 2	P. 1/P. 4	P. 1/P. 4	P. 1/P. 6	P. 1/P. 6
Best-Poster-B	P. 1/P. 2				

- Approval with runoff is not one rule but a **family of rules**, parameterized by the ABC rule chosen for determining the finalists
- We obtained **axiomatic** and **experimental** results that show that this choice actually makes a big difference
- I had to omit a lot of things, so come to the poster session if you have questions or if you want to know more!