Comparing Ways of Obtaining

Candidate Orderings from Approval Ballots

Théo Delemazure Paris Dauphine University

Chris Dong Technical University of Munich

Dominik Peters Paris Dauphine University

Magdalena Tydrichova CentraleSupélec

Input: Binary information

→ approval preferences

Output: Ordering of the columns

→ axis of the candidates

Ideal World: CIP

→ preferences satisfy candidate interval (CI)

Real World: Near C1P → near candidate interval

	Ann	Bob	Cora	Dan
4 ×				
4 ×				
3 ×				
1 ×				

Question: what function should the near-axis optimize?

1 ×

Voter Deletion

Minimizes how many votes are not interval.

Minimal Flips

Minimizes how many v need to be added/removed. **Ballot Completion**

Minimizes how many \checkmark need to be added.

Minimal Swaps

Minimizes the number of swaps on the axis.

Forbidden Triples

Minimizes the number of triplets (**\(\times,\times,\times\)**.

Family of scoring rules

Minimizes the sum of costs over all voters.

Complexity

All these rules are NP-Hard to compute. (Booth, 1975)

Axiomatic Analysis

Responsiveness to Information

Stability VD

Adding one voter to a profile cannot change the entire set of optimal axes.

Ballot Monotonicity VD BC

If we add approvals to the ballot of a voter to turn it into an interval of the selected axis, this axis is still selected.

Reaction to Clones

Clone-proximity **FI**

Clones should be next to each other on the axis.

Resistance to Cloning VD

Adding a clone of an existing candidate should not completely change the order of the other candidates.

Theorem: These two axioms are incompatible.

Centrists and Outliers

Clearance BC MS FT

A never approved candidate should not be in a position in which it can break intervals.

Veto-Centrism MS FT

If all approval ballots are of size m-1, the candidate at the center of the axis is the most approved candidate.

Theorem: Ballot Monotonicity + Resistance to Cloning = VD

LAPEIIIICIICS

We tested our rules on both synthetic and real data.

- 1. All five rules generally found reasonable axes, with only slight variations.
- 2. In average, FT seems to return better axes and VD worse axes.
- 3. Our methods are comparable if not better than **ordinal** methods.

Context: French presidential elections

Data: Voter Autrement experiments Baseline: 8 poll institutes axes

Example: FT axes for 2017 and 2022:

LO NPA PS LFI EM R LR DLF FN UPR SP

LO NPA LFI PCF PS EELV EM LR R RN REC DLF

Context: Supreme Court of the US Data: Justices' opinions on cases Baseline: Martin-Quinn method

Example: FT axis for 2021 term:

Lots of applications:

- Political ordering
- Parliament members
- Archeology
- Scheduling
- Poster ordering

Read the full paper!

