Approval with Runoff

Théo Delemazure ¹ Jérôme Lang ¹ Jean-François Laslier ² Remzi M. Sanver ¹

¹CNRS, LAMSADE, Université Paris Dauphine–PSL ²CNRS, Paris School of Economics–PSL

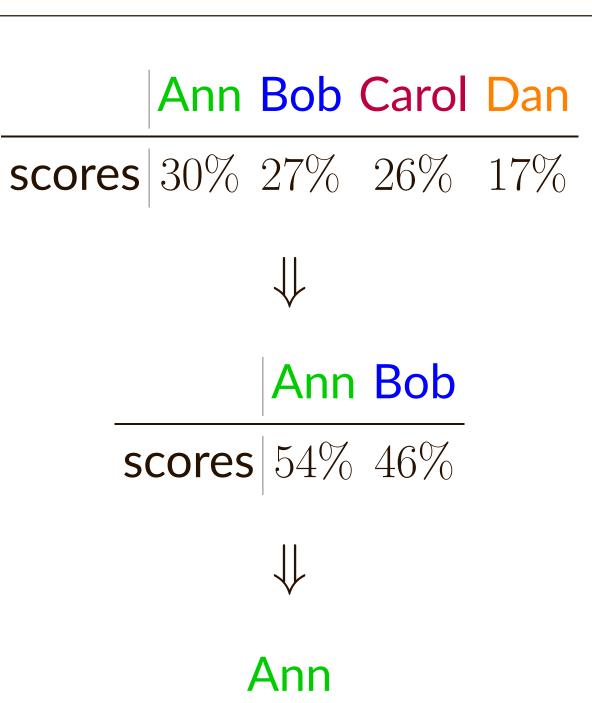
Plurality with Runoff

First round: Voters vote for their favorite candidate. The two candidates with the highest scores advance to the second round

Second round: Majority vote

Used in more than 80 countries, but fails most good theoretical properties because of the use of plurality

Can we keep the benefits of the two-round protocol without having to bear all the drawbacks of plurality in the first round?



Monotonicity ⇒ Failed

If $a \in \mathcal{C}$ is the winner of an election, and one voter changes his vote in favor of a then a should remain the winner.

Resistance to cloning \Rightarrow Failed

Introducing a clone of an existing candidate should not change significantly the result of the election.

Condorcet-loser criterion ⇒ Satisfied

A candidate who can be defeated in a head-to-head competition against each other candidate should not win.

Approval with Runoff (AVR)

First round: Voters approve as many candidates as they like. We use an approval-based committee rule to select the two finalists

Approval ballot	score			
$10 \times Bob$,		$MAV (\alpha = 0)$	PAV ($\alpha = \frac{1}{2}$)	$CCAV(\alpha=1)$
$20 \times$ Ann, Bob, Carol	Bob, Ann	110	85	60
$30 \times Ann, Bob$	Bob, Carol	100	90	80
$20\times$ Carol, Dan	Bob, Dan	85	85	85
5× Dan	• • •	• • •	• • •	

Second round: Majority vote

α AV-rules

A family of rules that select pairs of candidates maximizing:

 $\alpha \text{AV}(V) = \operatorname{argmax}_{x,y \in \mathcal{C}} \left(S_V(x) + S_V(y) - \alpha S_V(xy) \right)$

 $S_V(x)$ = number of voters who approve x

 $S_V(xy)$ = number of voters who approve both x and y

 $\alpha = 0$ Multi-winner Approval Voting (MAV)

Select the two candidates with highest number of approvals.

 $\alpha = \frac{1}{2}$ Proportional Approval Voting (PAV)

 α = 1 Chamberlin-Courant Approval Voting (CCAV) Select the pair of candidates that maximizes the number of voters approving at least one of them.

Favorite-consistency

Approval ballot		CCAV score
$10 \times$ Bob, $40 \times$ Ann, Bob $40 \times$ Ann, Carol $10 \times$ Carol	Bob, Carol Ann, Bob Ann, Carol	100 90 90

With CCAV, Bob and Carol are finalists, but Ann is the approval winner with 80% approvals

⇒ We might want the approval winner to be among the finalists

Favorite-consistency: At least one finalist is an approval winner

⇒ MAV satisfies it, but not CCAV and PAV

We define sequential αAV -rules as a family of rules such that:

- 1. The first finalist x maximizes the approval score $S_V(x)$
- 2. The second finalist y maximizes $S_V(x) + S_V(y) \alpha S_V(xy)$

Note: MAV and sequential MAV are equivalent

Experimental results on real data

We used datasets of approval ballots from various sources:

- Datasets collected during the 2017 French presidential election in several cities, each dataset with ~ 1000 voters and 11 candidates
- Poster competition votes, collected at a Summer School. ~ 60 voters per dataset and 17 candidates.

	MAV	PAV	S-PAV	CCAV	S-CCAV
2017-Strasbourg	Lib/ Left				
2017-Grenoble	Soc/ Lib	Lib/ Left	Lib/Soc	Soc/ Cons	Soc/ Cons
2017-Crolles	Lib/ Left	Lib/ Left	Lib/ Left	Lib/ Nat	Lib/ Nat
Best-Poster-A	P. 1/P. 2	P. 1/P. 4	P. 1/P. 4	P. 1/P. 6	P. 1/P. 6
Best-Poster-B	P. 1/P. 2				

If we use the following political scale, the ideological distance between the two finalists **increases** when we go from MAV to CCAV:

Left Soc Lib Cons Nat

Summary of axiomatic results

	MAV^R	$S-PAV^R$	S-CCAV ¹	R PAV R	$CCAV^R$
Pareto-efficiency	\checkmark	\checkmark	*	\checkmark	*
monotonic	\checkmark				
resistant to cloning			\checkmark		\checkmark
favorite-consistency	\checkmark	\checkmark	\checkmark		

^{*} Depends on the tie-breaking used

Impossibilities:

- 1. No AVR rule is monotonic, weakly clone-proof and neutral
- 2. No AVR rule is clone-proof and Pareto-efficient
- 3. No AVR rule is weakly strategy-proof and Pareto-efficient

Conclusion

- Approval with runoff is not one rule but a **family of rules**, parameterized by the ABC rule chosen for determining the finalists
- Axiomatic and experimental results show that this choice actually makes a big difference