Aggregating Correlated Estimations with (Almost) no Training

Théo Delemazure

LAMSADE, Université Paris Dauphine-PSL, CNRS

François Durand
Nokia Bell Labs France

Fabien Mathieu
Swapcard

The problem

We want to choose an item that maximizes utility among a set of candidates.

However, we only have access to **noisy estimates of the items' utilities** by human or software *agents*.

Range voting (RV)

Approval voting (AV)

greater than the average.

Nash product (NP)

product of estimates.

of estimates.

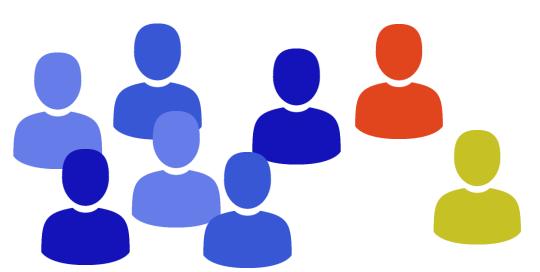
Select the candidate that maximizes the *sum*

Select the candidate that maximizes the

Select the candidate that maximizes the

number of agents who estimate its utility

Problem: What if agents are (heavily) correlated?



If all **blue** agents have similar estimates, **we should not** take the average.

The usual way to solve this problem is to **assume diversity** among agents. ...But what if we don't?

Question: What aggregation method should we use to avoid drawbacks due to correlations?

The challengers

Model Aware (MA)

Maximum likelihood approach, knowing the *noise model* used to generate the estimates and its parameters.

Pseudo Likelihood (PL)

Maximum likelihood approach, where the parameters of the models are *evaluated* from observations of the estimates.

Pseudo Likelihood + (PL+)

With training on 1000 past observations.

Our proposal: Embedded Voting (EV)

Using the **Singular Value Decomposition** (SVD) of the matrix of estimates, we can identify the different "groups" of voters. **The EV score** is the product of the estimates of each group (where the estimate is one of the singular values). For **EV+**, the estimates matrix contains 1000 past observations.

Experiments

Parameters of the noise model

 $E = (e_{i,l})_{1 \le i \le n, 1 \le l \le k}$: features of the n agents.

 $\sigma_f \in \mathbb{R}_{\geq 0}$: feature noise intensity. $\sigma_d \in \mathbb{R}_{\geq 0}$: distinct noise intensity.

Error of agent i for candidate j

$$\varepsilon_i(c_j) \coloneqq \sigma_d d_{i,j} + \sigma_f \sum_{1 \le l \le k} e_{i,l} f_{l,j},$$

where $d_{i,j} \sim \mathcal{N}(0,1)$ and $f_{l,j} \sim \mathcal{N}(0,1)$.

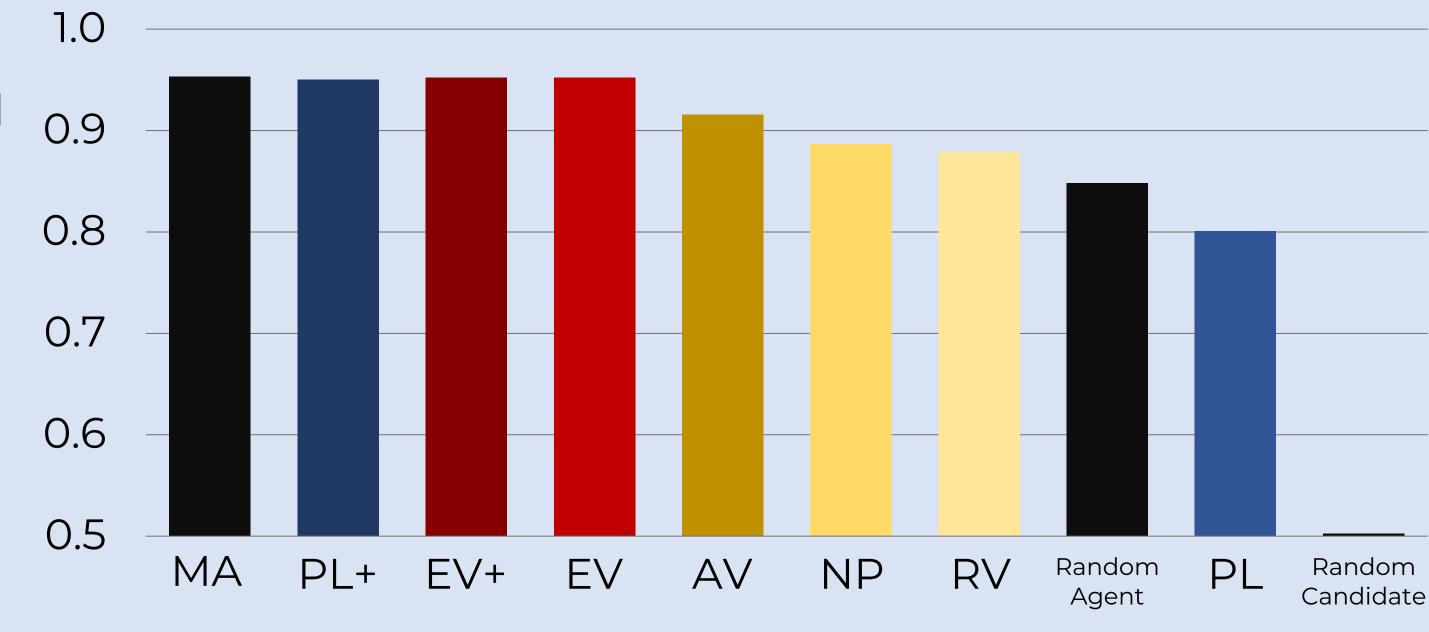
Reference scenario

 One group of 20 agents and 4 independent agents:

$$E = \begin{pmatrix} \mathbb{1}_{20 \times 1} & 0 \\ 0 & I_4 \end{pmatrix}$$

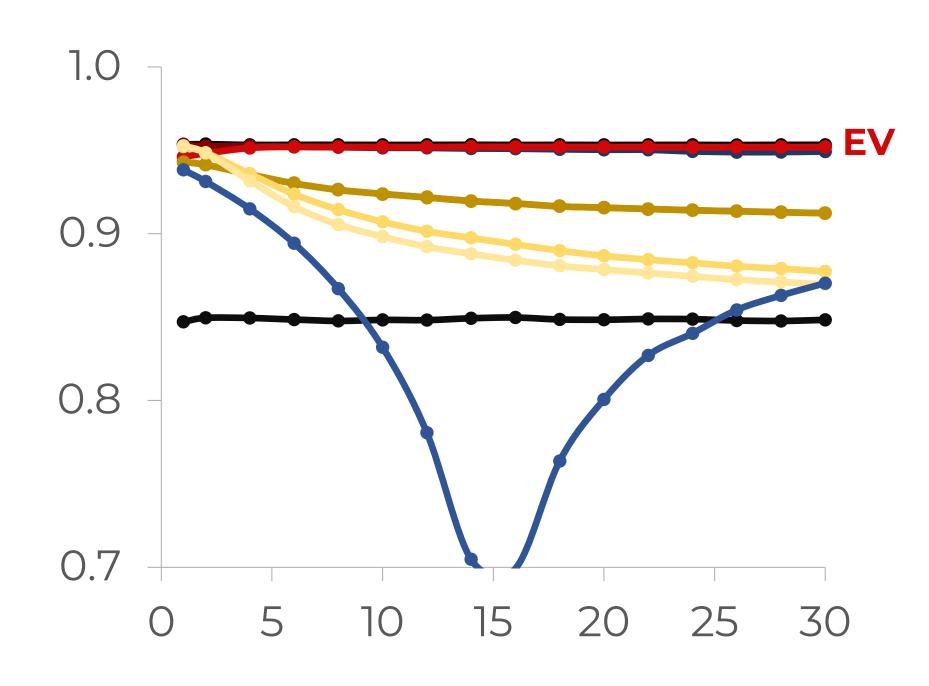
• $\sigma_f = 1$ and $\sigma_d = 0.1$.

We compute **the average relative utility** obtained by
each rule over 10,000 choices.

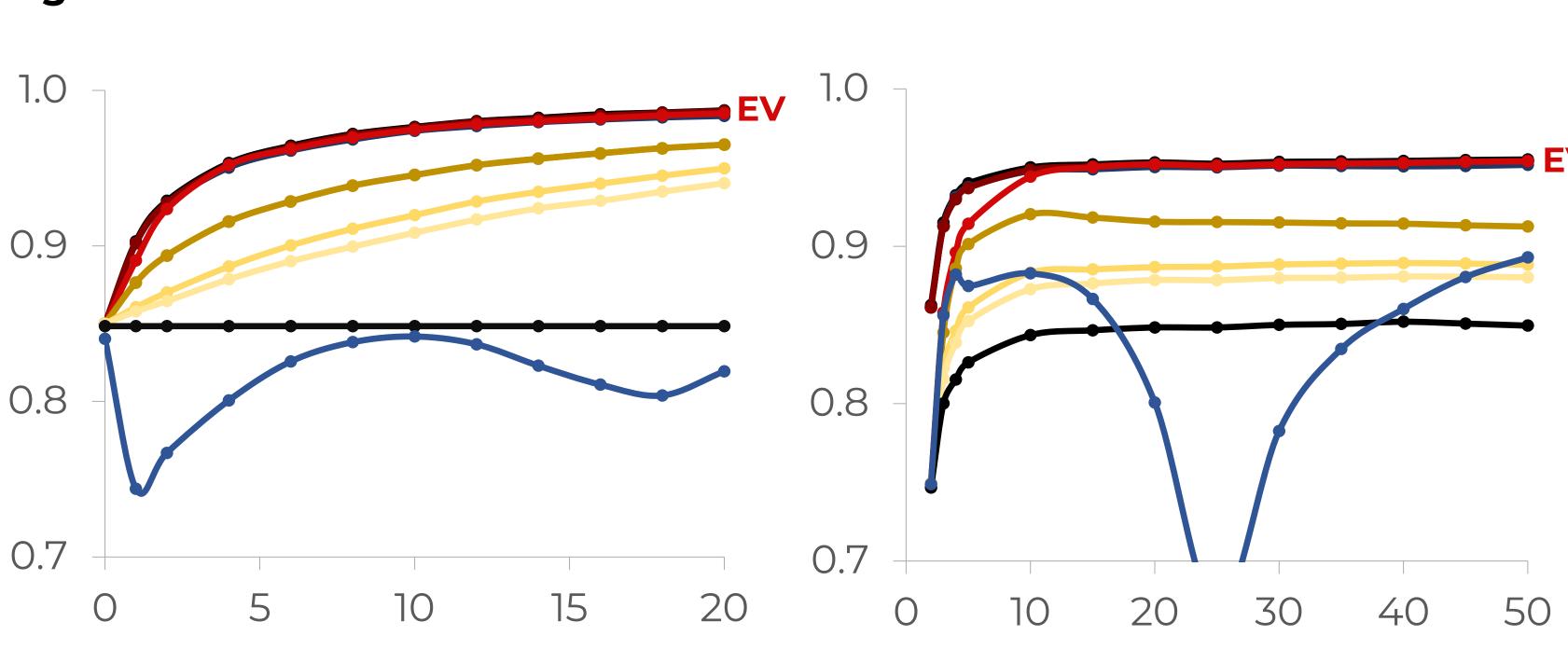


The performances of Embedded Voting stay competitive when we vary...

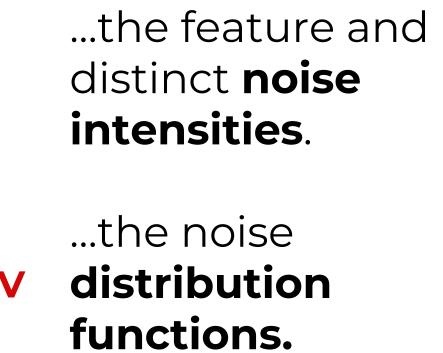
...the number of agents in the large group.



...the number of independent agents.



...the **number of candidates**.



...the correlation degree between the agents.

...the probability distribution of utilities.

Take-away

Context

Aggregating correlated agents in a choice problem.

Our proposal

Embedded Voting (EV), that uses SVD to embed the agents according to the estimates they produce.

Our results

- 1. Our method *outperforms* classical ones, particularly when agents are correlated.
- 2. When a training set is available, a maximum likelihood approach is the best option.
- 3. If there is no such training, *Embedded Voting* should be preferred.

Our paper hal-04195384

Our Python Package embedded_voting