
Generalizing Instant Runoff Voting to Allow Indifferences

THÉO DELEMAZURE, CNRS, LAMSADE, Université Paris Dauphine - PSL, France
DOMINIK PETERS, CNRS, LAMSADE, Université Paris Dauphine - PSL, France

Manuscript: April 2024

Instant Runoff Voting (IRV) is used in elections for many political offices around the world. It allows voters
to specify their preferences among candidates as a ranking. We identify a generalization of the rule, called
Approval-IRV, that allows voters more freedom by allowing them to give equal preference to several candidates.
Such weak orders are a more expressive input format than linear orders, and they help reduce the cognitive
effort of voting.

Just like standard IRV, Approval-IRV proceeds in rounds by successively eliminating candidates. It interprets
each vote as an approval vote for its most-preferred candidates among those that have not been eliminated.
At each step, it eliminates the candidate who is approved by the fewest voters. Among the large class of
scoring elimination rules, we prove that Approval-IRV is the unique way of extending IRV to weak orders
that preserves its characteristic axiomatic properties, in particular independence of clones and respecting a
majority’s top choices. We also show that Approval-IRV is the unique extension of IRV among rules in this
class that satisfies a natural monotonicity property defined for weak orders.

Prior work has proposed a different generalization of IRV, which we call Split-IRV, where instead of
approving, each vote is interpreted as splitting 1 point equally among its top choices (for example, 0.25 points
each if a vote has 4 top choices), and then eliminating the candidate with the lowest score. Split-IRV fails
independence of clones, may not respect majority wishes, and fails our monotonicity condition.

The multi-winner version of IRV is known as Single Transferable Vote (STV). We prove that Approval-STV
continues to satisfy the strong proportional representation properties of STV, underlining that the approval
way is the right way of extending the IRV/STV idea to weak orders.
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1 INTRODUCTION

Fig. 1. Ballot from 2016
Australian federal election

Instant Runoff Voting (IRV) is a voting rule for selecting a single winner,
based on voters ranking the available candidates or alternatives. It works
in rounds by sequentially eliminating candidates: the rule repeatedly
identifies the candidate 𝑐 for whom the fewest voters currently vote
(in the sense that 𝑐 is their highest-ranked candidates among those
that have not been eliminated), and eliminates that candidate. The last
candidate remaining is the winner.

While a wide variety of ranking-based voting rules have been studied
over the centuries, IRV is essentially the only ranking-based voting rule
that has been adopted for elections to political offices. Australia has used
the rule for electing its House of Representatives since 1918 (Figure 1),
Ireland uses it to elect its President, and it is used in Alaska and Maine
for several offices. It is also in use at the local level in many jurisdictions,
as well as within some societies and political parties. Electoral reform
advocates such as FairVote are pushing for further adoption, arguing
that IRV and its ranking-based input leads to election outcomes that
better reflect voters’ preferences.

An important drawback of IRV is the burden it imposes on voters who
may need to rank-order a large number of candidates. This is particularly
severe in Australia, where voting is compulsory and a ballot is invalid
if it fails to rank every candidate. As we can see in Figure 2, 20% of
Australian voters need to rank 10 or more candidates.

5 6 7 8 9 10 11 12

5%

15%

21% 22%
18%

11%
7%

1%

Fig. 2. The fraction of voters in the 2022 Aus-
tralian federal election that needed to rank
each number of candidates between 5 and 12.

Most other jurisdictions allow voters to submit a
truncated ranking, where the voter may stop after rank-
ing only some of the candidates, and the vote is not
taken into account (or “exhausted”) after all the candi-
dates that were ranked have been eliminated. However,
voters who wish to rank some disfavored candidates in
low positions must rank the whole field. It also forces
voters to clearly distinguish all candidates that they
favor, even when they may not have sufficient informa-
tion to do so. In particular, voters cannot just submit a

simple “approval vote” where they indicate several candidates as acceptable.
A possible solution to these issues is to allow voters to express indifferences, that is, to assign

several candidates an equal rank. Because IRV is only defined for linear orders (rankings without
indifferences), to implement this solution we need to decide how to generalize IRV to weak orders
(rankings with indifferences), and the right way to generalize it is not obvious.

In this paper, we will argue that the right generalization is what we call Approval-IRV, which
combines the ideas of IRV and of approval voting. This rule interprets each weak order as an
approval vote for the highest-ranked candidates that have not yet been eliminated. It then repeatedly
eliminates the candidate with the lowest approval score (i.e., the candidate who is top-ranked by
the fewest voters), until only one candidate remains and is declared the winner. Figure 3 shows an
example of how the rule works.

There are several potential arguments for moving from standard IRV (allowing only rankings or
truncated rankings) to a system like Approval-IRV that allows for weak orders.

https://fairvote.org/
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Fig. 3. An example of Approval-IRV with voters 𝑣1, . . . , 𝑣5. The first eliminated alternative is 𝑐 , which is ranked
on top only once. Then 𝑑 is eliminated, and finally 𝑎 wins the majority vote against 𝑏. Thus, 𝑎 is the winner.

(1) Less effort. Allowing voters to give equal preference to several candidates reduces the problems
with rankings that we discussed above. In particular, voters can give a high ranking to some
candidates and a low ranking to others, without having to rank all candidates in between (see
Figure 5 (b)), and it is possible to submit a simple approval vote (see Figure 5 (c)). Moreover, voters
who do not have enough information to strictly rank some candidates can still vote sincerely.

(2) More expressive. Allowing equal rankings gives voters more ways to express their preferences.
For example, some people might be truly indifferent between candidates, and forcing them to rank
such candidates would be distorting. (For this reason, some have argued that Australia’s compulsory
voting forces voters to lie [Orr, 1997, Rydon, 1968].) The additional expressive power is also useful
in U.S. jurisdictions that allow voters to only use 3–5 ranks. Weak orders allow voting for more
than 3–5 candidates within the same number of ranks.
(3) Fewer invalid ballots. Compared to plurality elections (“choose your favorite candidate”),

voting in an IRV election is more difficult, and the voting instructions are more complicated to
follow. In particular, some voters may not realize that they must only place one candidate in each
rank, and submit a ballot which encodes a weak order and which will be counted as invalid. In the
American context, this mistake is known as an “overvote”.1 Allowing weak orders could reduce the
number of inadvertent invalid ballots.

(a) Map of San Francisco election
precincts, colored by the fraction of votes
that could be interpreted as a weak order
with indifferences.
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(b) Among election precincts, median house-
hold income (horizontal axis) is negatively cor-
related with percent of ballots showing a weak
order (vertical axis; 𝑟 = −0.4, 𝑝 < 0.001).

Fig. 4. Ballot data from the 2019 mayoral election in San Francisco.

For how many ballots would this make a difference, in practice? One can try to quantify this
via the number of overvotes reported by election officers. McCune [2023] reports that in a very
close 2021 City Council election in Portland, Maine, a different treatment of overvotes would
1In many U.S. jurisdictions using IRV, such ballots are partially counted: if the top ranks contain unique choices, the ballot
is counted as a vote for them. Once those candidates are eliminated and a rank with several candidates is reached, the vote
is counted as exhausted and ignored in the following rounds.
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(a) Two top choices (b) Vetoing a candidate (c) An approval vote

Fig. 5. Examples of ballots that can be interpreted as weak orders (2019 mayoral election in San Francisco).

have changed the winner. One issue with depending on reported overvotes is that not all ballots
containing overvotes encode valid weak orders – in particular they might assign multiple ranks to
the same candidate and are therefore definitely invalid. Conveniently, San Francisco makes very
detailed vote data publicly available in a CVR JSON format, and even complements these with
image scans of every ballot. We analyzed this data to see how many ballots could be interpreted as a
weak order with at least one indifference between candidates. For the 2019 mayoral election in San
Francisco, we found 899 such ballots out of 206 117 ballots submitted (0.4%); see Figure 5 for some
examples. Voters casting such weak order ballots are geographically concentrated (Figure 4 (a)) and
the fraction of ballots that encode weak orders in specific election precincts correlates negatively
with median income (Figure 4 (b)). This mirrors previous finding of higher rates of invalid ballots
in precincts with lower incomes in San Francisco [Neely and McDaniel, 2015] and New York
City [Cormack, 2023], as well as of the frequency of overvotes [Pettigrew and Radley, 2023].
In Scotland’s 2017 local elections, 1.6% of ballots were rejected because of multiple top choices
[Electoral Commission, 2017].
(4) Better alignment with candidate campaign communications. In practice, many voters decide

how to vote based on candidate campaigns and advertisements. In Australia (where truncated
rankings are not allowed), political parties issue recommended rankings. But in the American
context (for example in New York City), most campaigns only ask supporters to rank their candidate
#1, without providing guidance about how to rank other candidates [Cormack, 2023]. Voters who
are convinced by several candidates might therefore be interested to rank all of them #1, which
Approval-IRV allows them to do.

(5) Better incentives to support one’s favorite. Under plurality voting, it is common strategic advice
to not vote for one’s favorite candidate 𝑥 , but rather for one’s favorite 𝑦 among front-runners. One
advantage of IRV is that one can honestly vote for 𝑥 , because should 𝑥 be eliminated, the vote is
transferred to 𝑦. However, there is some risk with this honest approach, because it may be that
one’s vote is “stuck” at 𝑥 while 𝑦 gets eliminated (and 𝑥 also ends up losing). Insincerely ranking 𝑦
top could get 𝑦 elected. This phenomenon is sometimes called “favorite betrayal” [Small, 2010],
or “compromise strategic voting” [Graham-Squire and McCune, 2023, Green-Armytage, 2014].
Approval-IRV partially mitigates this issue by allowing voters to rank both 𝑥 and 𝑦 in top position.2

(6) A compromise between Ranked Choice Voting and Approval Voting. As of 2024, the two most
successful strands of the electoral reform movement in America are advocates for IRV (or “ranked
choice voting”) such as FairVote , and advocates for Approval Voting such as the Center for

2There are still some situations where putting only 𝑦 on top is a successful manipulation; however we can at least show
that under Approval-IRV, if the sincere vote for 𝑥 leads to a win for 𝑦, then putting both 𝑥 and 𝑦 on top still leads to a win
for 𝑦 (a certain monotonicity property), so the latter strategy is quite safe. See Section 4.

https://sfelections.sfgov.org/november-5-2019-election-results-detailed-reports
https://fairvote.org/
https://electionscience.org/
https://electionscience.org/
https://electionscience.org/
https://electionscience.org/
https://electionscience.org/
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Election Science . Approval-IRV is a rule that combines properties of both of these rules, and may
in some situations serve as a compromise position.

While there are several advantages to moving to weak orders, there are also some issues that need
to be considered. For example, Approval-IRV inherits the well-known downsides of linear-order
IRV, such as monotonicity violations and failures to elect Condorcet winners. In addition, voter
instructions explaining how to fill out a weak-order ballot correctly could become more complicated
than current instructions for linear-order ballots, which could cause misunderstandings and offset
some of the gains in terms of avoiding invalid ballots.

Multi-winner voting. IRV also has a version that allows for multi-winner elections, known as
Single Transferable Vote (STV), which is used in Ireland, New Zealand, the Australian senate, and
elsewhere. Since the number of candidates in a multi-member district can be even higher than for
single-winner elections,3 moving to weak orders makes sense for STV also. We define Approval-STV
in a natural way, and show that it preserves the proportionality properties of linear-order STV.

Prior discussion in the literature. The advantages of allowing indifferences in an IRV or STV
election have long been recognized. In a series of articles in the journal Voting Matters, Meek [1994,
Section 6], Warren [1996], and Hill [2001] developed a way in which IRV and STV (and in fact,
every ranking-based voting rule) can be generalized to weak orders. Their idea was to replace every
weak order by several (weighted) ranking votes for all possible ways in which the indifferences can
be broken. For example, a voter who has a complete ranking, except for an indifference between 𝑎

and 𝑏, would be replaced by a weight- 12 vote with 𝑎 ranked above 𝑏 and a weight- 12 vote with 𝑏

above 𝑎. Similarly, a voter who reports indifference between all candidates would be replaced by𝑚!
votes each with weight 1

𝑚! . After this replacement operation, linear-order IRV or STV is applied.
Aziz and Lee [2020, footnote 8] note that, as described, this leads to an algorithm that may take

exponential time. However, there is an equivalent description of this rule that is polynomial-time
and easy to understand: for a voter who currently ranks 𝑡 candidates on top, the voter assigns 1/𝑡
points to each of these candidates, and the rule repeatedly eliminates the candidate with the fewest
points. Accordingly, we call this rule Split-IRV. Note that Split-IRV is different from Approval-IRV;
in the example shown in Figure 3, 𝑎 is the winner under Approval-IRV, but under Split-IRV, 𝑎 is the
first alternative to be eliminated (receiving only 1

2 +
1
3 points), and 𝑏 is the final winner. Split-IRV

has some intuitive appeal since it encodes the idea that every voter has a “single” vote.4 The multi-
winner version, Split-STV, is in fact in practical use: Mollison [2023] reports that Split-STV “was
first used by the John Muir Trust (for Trustee elections) in 1998, and by the London Mathematical
Society in 1999” and both still use Split-STV today. It is implemented in the vote package for R
[Raftery et al., 2021, p. 682].
To our knowledge, the only previous scholarly discussion of Approval-IRV and Approval-STV

is by Janson [2016, Section 18.2].5 He discovered the possibility of generalizing IRV and STV via
approval based on his historical analysis of voting methods used in Sweden in the early 1900s.
He called this approach “Phragmén’s principle” after the Swedish mathematician Lars Edvard
Phragmén (1863–1937) who around 1903 had proposed a similar approach to extend certain voting

3In the 1983 Australian senate election, voters in New South Wales had to strictly rank 62 candidates for 10 seats. 11.1% of
ballots were invalid. In 1984, the election law for the senate was reformed to allow truncated rankings and to rank parties
instead of candidates. This reduced the rate of invalid votes to 3.5% [1983 results , abc news article ].
4The idea of splitting 1 point uniformly between approved candidates has been discussed in other contexts under the terms
“Satisfaction Approval Voting” [Brams and Kilgour, 2015] or as “equal and even cumulative voting” [e.g., Bardal, 2023,
Section 3.2.2] and this scoring system is used by Peoria, Illinois, for its city council elections [Brockington, 2003, p. 6].
5Since about 1996, there have been sporadic discussions of Approval-IRV on internet forums, see e.g., the election-methods
mailing list (1996 , 2004 ), electowiki , and reddit (2019 ). A 2004 webtool implements both Approval-IRV and Split-IRV.

https://electionscience.org/
https://electionscience.org/
https://electionscience.org/
https://www.johnmuirtrust.org/assets/000/001/714/JMT_Articles_of_Association_2021_original.pdf?1624286801#page=32
https://www.lms.ac.uk/sites/lms.ac.uk/files/files/Single%20Transferable%20Vote.pdf
https://www.lms.ac.uk/sites/lms.ac.uk/files/files/Single%20Transferable%20Vote.pdf
http://psephos.adam-carr.net/countries/a/australia/1983/1983senatensw.txt
https://www.abc.net.au/news/2015-09-23/the-origin-of-senate-group-ticket-voting-and-it-didnt-come-from-/9388658
http://lists.electorama.com/pipermail/election-methods-electorama.com/1996-July/098704.html
https://www.mail-archive.com/election-methods-electorama.com@electorama.com/msg03363.html
https://electowiki.org/wiki/Single_transferable_vote%23Ways_of_dealing_with_equal_rankings
https://www.reddit.com/r/EndFPTP/comments/e5h2uu/equalrank_stv/
http://condorcet.ericgorr.net
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rules to work with votes that have two levels of approval. Janson did not analyze the properties
of Approval-IRV or Approval-STV, but wrote that “it would be interesting to compare the two
ways to handle weakly ordered lists. It seems that Phragmén’s principle [...] might have some
advantages over splitting the vote between total orderings as described [by Meek and Hill].” In this
paper, we take up Janson’s research program and confirm his prediction: Approval-IRV is a better
generalization than Split-IRV.
Our results. We prove two characterization results showing that Approval-IRV is the unique
extension of IRV to weak orders that satisfies certain desirable properties. Our characterizations
operate within the large class of elimination scoring rules which use sequential elimination, at
each step eliminating the candidate with the lowest score, where the scores of the candidates are
determined by some system of positional scoring rules.6 In the world of weak orders, positional
scoring rules have a lot of flexibility since they can depend in arbitrary ways on the order type of a
weak order (i.e., on the number of alternatives in each indifference class). Both Approval-IRV and
Split-IRV are examples of elimination scoring rules.
Our first result shows that Approval-IRV is the unique elimination scoring rule satisfying the

axioms of independence of clones and respect for cohesive majorities. These axioms are generalizations
to the weak order context of two properties that are characteristic features of IRV, and we feel that
they should therefore be satisfied by a reasonable generalization of IRV to weak orders.

Theorem 3.6. Approval-IRV is the unique elimination scoring rule satisfying independence of clones
and respect for cohesive majorities.

The first condition is Tideman’s [1987] independence of clones, which requires that if a candidate
is cloned by inserting new candidates into the preference profile in such a way that all clones are
ranked adjacently by all voters, then this should not affect the outcome: If a winner is cloned, then
one of the clones should still be a winner; if a loser is cloned, the identity of the winner should
not change at all. This property encodes a kind of resistance to the spoiler effect. Tideman [1987]
showed that this axiom is satisfied by IRV for linear orders. We show that Approval-IRV continues
to satisfy it for weak orders, while Split-IRV fails the axiom.

The second axiom is an axiom encoding the idea that a majority’s preference should be followed.
For IRV with linear orders, this is easy to define: if a majority of voters ranks a candidate in top posi-
tion, then this candidate should be a winner. For weak orders, the definition is less straightforward.
At a minimum, when a majority of voters has the exact same set of top choices, then one of those
candidates should win. Both Approval-IRV and Split-IRV satisfy this. But Approval-IRV satisfies
a stronger axiom, guaranteeing influence to majorities even if they have some disagreement in
their top choices. Our axiom of respect for cohesive majorities requires that if a majority of voters all
rank a candidate 𝑥 in top position (possibly among others), then the winning candidate must be
top ranked by at least one of the voters in this majority. In the example of Figure 3, this property
applies to the left three voters who all rank 𝑏 on top, and would require that the winner is one of 𝑎,
𝑏, or 𝑑 (but not 𝑐 since none of those three voters ranks 𝑐 top). Split-STV fails this condition. So do
many other voting rules, including Condorcet extensions such as Schulze and ranked pairs.

Our second result shows that Approval-IRV is the unique elimination scoring rule which extends
IRV in a monotonic way.

Theorem 4.3. Approval-IRV is the unique elimination scoring rule that agrees with IRV on profiles
of linear orders and satisfies indifference monotonicity.

6There are no known axiomatic characterizations of elimination scoring rules among the class of all possible voting rules,
and obtaining one has been a very long-standing open problem [Smith, 1973 (“we have nothing approaching a satisfactory
characterization of point runoff systems”), Conitzer et al., 2009 (Conjecture 1); see Freeman et al., 2014 for a related result].
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Approval-IRV Split-IRV

Independence of clones
Respecting cohesive majorities
Indifference monotonicity

Table 1. Comparison of properties satisfied by the rules.
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𝑑

𝑎
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Fig. 6. Indifference monotonicity:
if 𝑐 is the winner and a voter makes
this change, then 𝑐 stays winning.

This statement may sound surprising, since IRV has long been
famous for failing monotonicity axioms [Smith, 1973]; in par-
ticular, if 𝑐 is the winner and some voter moves up 𝑐 in their
ranking by swapping its place with another candidate 𝑏, then 𝑐

may stop being the winner. In a sense, the reason for the mono-
tonicity failure is that 𝑏 is now ranked lower by that voter, and
may therefore be eliminated earlier than previously. We show
that Approval-IRV satisfies a weak form of monotonicity: if 𝑐 is
the winner, and a voter moves 𝑐 up so it is now in the same rank as 𝑏, then 𝑐 should remain the
winner. We call this property indifference monotonicity, since it only applies to the case where
a voter introduces an indifference by shifting up some alternative that the voter previously did
not have indifferent with any other alternative (see Figure 6). Approval-IRV satisfies indifference
monotonicity. As predicted by our characterization result, Split-IRV fails it.

For our third result, we turn to multi-winner elections. For linear orders, the Single Transferable
Vote (STV) provides proportional representation to voters, which has been formalized by an axiom
known as Proportionality for Solid Coalitions (PSC). Aziz and Lee [2020] generalized this axiom to
weak orders, calling the resulting axiom generalized PSC. They introduced a multi-winner voting
rule called Expanding Approvals Rule (EAR) which works for weak orders and satisfies this axiom.
We generalize STV to Approval-STV using the same ideas used in Approval-IRV, and prove that
Approval-STV, thus defined, satisfies generalized PSC.

Theorem 5.4. Approval-STV satisfies generalized Proportionality for Solid Coalitions.

On the other hand, Split-STV fails this axiom, even in the simple case of selecting only one winner.

2 PRELIMINARIES
Let 𝐶 = {𝑐1, . . . , 𝑐𝑚} be a set of𝑚 candidates or alternatives and 𝑁 = {1, . . . , 𝑛} be a set of 𝑛 voters.

Weak orders. A weak order ≽ is a complete and transitive binary relation over 𝐶 , where we write
𝑎 ≻ 𝑏 if 𝑎 ≽ 𝑏 and 𝑏 ̸≽ 𝑎 (strict preference) and 𝑎 ∼ 𝑏 if both 𝑎 ≽ 𝑏 and 𝑏 ≽ 𝑎 (indifference). For
sets 𝐴, 𝐵 ⊆ 𝐶 , we say 𝐴 ≻ 𝐵 if 𝑎 ≻ 𝑏 for all 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵.

𝜏1111

𝑎

𝑏

𝑐

𝑑

𝜏121

𝑎

𝑏 𝑐

𝑑

𝜏13

𝑎

𝑏 𝑐 𝑑

Fig. 7. Examples of weak orders
with different order types.

We will often write a weak order ≽ in the following format:
{𝑐1, 𝑐2} ≻ {𝑐3} ≻ {𝑐4}. Formally, every weak order partitions 𝐶
into indifference classes 𝐶1, . . . ,𝐶𝑘 such that 𝐶1 ≻ · · · ≻ 𝐶𝑘 and
whenever 𝑥,𝑦 ∈ 𝐶 𝑗 then 𝑥 ∼ 𝑦. The order type of a weak order
𝐶1 ≻ · · · ≻ 𝐶𝑘 is the ordered list 𝜏 = ( |𝐶1 |, . . . , |𝐶𝑘 |) of the sizes
of its indifference classes. We usually denote an order-type using
the notation 𝜏 |𝐶1 | ... |𝐶𝑘 | if this causes no ambiguity; for example 𝜏121
denotes the order type (1, 2, 1). See Figure 7 for examples. A weak
order with order type (1, 1, . . . , 1) (i.e., no indifferences) is called a
linear order, and a weak order with an order type 𝜏 with |𝜏 | = 2 (e.g., 𝜏23) is called dichotomous. A
profile is a collection of weak orders 𝑃 = (≽1, . . . , ≽𝑛) where ≽𝑖 is the weak order of voter 𝑖 .
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Scoring systems. We need the notion of a (positional) scoring system for weak orders. These
are used to let weak orders assign scores to alternatives. A scoring system is a map 𝑠 that maps
order types 𝜏 to scores 𝑠 (𝜏) = (𝑠1, . . . , 𝑠 |𝜏 | ) ∈ R |𝜏 |⩾0 where 𝑠 |𝜏 | = 0 without loss of generality. Given
a scoring system 𝑠 and a weak order 𝐶1 ≻ · · · ≻ 𝐶𝑘 with order type 𝜏 , an alternative 𝑐 ∈ 𝐶 𝑗 is
assigned a score of 𝑆≽,𝑠 (𝑐) = 𝑠 (𝜏) 𝑗 . Given a profile 𝑃 = (≽1, . . . , ≽𝑛), the score of alternative 𝑐 is
𝑆 (𝑐) = 𝑆𝑃,𝑠 (𝑐) =

∑
𝑖∈𝑁 𝑆≽𝑖 ,𝑠 (𝑐). (We often drop the subscript if 𝑃 and 𝑠 are clear from the context.)

Examples of scoring systems are the approval scoring system where 𝑠 (𝜏) = (1, 0, . . . , 0) for all
order types 𝜏 and the split scoring system where 𝑠 (𝜏) = (1/𝜏 (1), 0, . . . , 0). But the class of scoring
systems is broad and includes systems like variants of Borda scores but also pathological systems
such as those where weak orders with an odd number of indifference classes hand out approval
scores, and other weak orders give out 0 score to all alternatives.7 A scoring system is monotone
if for all order types 𝜏 , we have 𝑠 (𝜏)1 ⩾ 𝑠 (𝜏)2 ⩾ . . . ⩾ 𝑠 (𝜏) |𝜏 | and where 𝑠 (𝜏) |𝜏 | = 0. We will only
consider monotone scoring systems in this paper.8

Voting rules. A voting rule is a function 𝑓 that takes as input a profile 𝑃 and outputs a non-
empty set of tied winners𝑊 ⊆ 𝐶 (usually a singleton). In this paper, we will focus on a particular
family of voting rules, namely elimination scoring rules [Smith, 1973, Section 4]. The elimination
scoring rule associated to a (monotone) scoring system 𝑠 selects a winning candidate by repeatedly
removing a candidate with the lowest 𝑠-score from the profile, until only one candidate remains,
who is the winner. More formally, and carefully handling the possibility of ties, the rule can be
defined inductively as follows. Consider a profile 𝑃 , defined on candidate set 𝐶′. If 𝐶′ = {𝑐}, we
set 𝑓 (𝑃) = {𝑐}. If |𝐶′ | ⩾ 2, let 𝐿′ = {𝑐 ∈ 𝐶′ : 𝑆𝑃,𝑠 (𝑐) ⩽ 𝑆𝑃,𝑠 (𝑑) for all 𝑑 ∈ 𝐶′} be the set of lowest-
scoring alternatives in 𝑃 . Then we set 𝑓 (𝑃) = ⋃

𝑐∈𝐿′ 𝑓 (𝑃 |𝐶′\{𝑐 }), where 𝑃 |𝐶′\{𝑐 } refers to the profile
obtained from 𝑃 by restricting all the weak orders in it to the candidate set 𝐶′ \ {𝑐} where 𝑐 has
been deleted.9

If we restrict ourselves to profiles of linear orders, various elimination scoring rules have already
been defined and studied in the literature. The most well-known is Instant Runoff Voting (IRV),
that uses plurality scores 𝑠 (𝜏11...1) = (1, 0, . . . , 0), but rules like the Baldwin rule and the Coombs
rule (based on Borda and veto scores, respectively) have also been studied.

For profiles of weak orders, we are particularly interested in two elimination scoring rules that
generalize IRV in natural ways: Approval-IRV is the elimination scoring rule based on the approval
scoring system, and Split-IRV is the one based on the split scoring system. We can interpret
Approval-IRV as each voter assigning a full point to each top-ranked alternative. In Split-IRV,
the voter splits one point evenly among top-ranked alternatives – for example if there are 3 top
alternatives, then each receives a score of 1

3 . Then repeatedly the lowest scoring alternative is
eliminated, until only one alternative remains.

7This definition gives the most general way to define positional scoring for weak orders in a neutral way (i.e., that doesn’t
depend on alternative names). It can also be derived from the Myerson–Pivato theorem [Myerson, 1995, Pivato, 2013]
from which one can deduce that the voting rules for weak orders that satisfy reinforcement are exactly those selecting the
highest-scoring alternatives based on a scoring system as we have defined it [see also Morkelyunas, 1982].
8This is not a completely benign restriction, since an elimination scoring rule defined on a non-monotone score system can
still satisfy axioms like unanimity [Freeman et al., 2014], but they seem very unnatural.
9This way of breaking ties is known as parallel-universe tie-breaking [Conitzer et al., 2009, Section 7], and leads to an
axiomatically well-behaved rule. Deciding whether a candidate is a winner under this tie-breaking is NP-complete [Boehmer
et al., 2023, Theorem 6.2], but this should not be a problem in political elections with moderately low𝑚 since the problem
can be solved using an𝑂 (2𝑚 · 𝑛𝑚2 ) time algorithm [Boehmer et al., 2023, Theorem 6.1].
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𝑥2 𝑥3
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Fig. 8. Examples of 𝑋 = {𝑥1, 𝑥2, 𝑥3} being a clone set or not being a clone set.

3 SINGLE-WINNER VOTING: INDEPENDENCE OF CLONES AND RESPECTING
COHESIVE MAJORITIES

In this section we will axiomatically study elimination scoring rules and prove that Approval-IRV
is the only elimination scoring rule to satisfy two axioms characteristic of IRV (when suitably
generalized for weak orders): independence of clones and a condition about respecting majorities.

3.1 Independence of clones
Among social choice theorists, IRV stands out from most other ranking-based voting rules because
it satisfies the independence of clones axioms [Tideman, 1987]. This axiom requires that adding
new candidates to an election who are very similar to existing candidates (so that all voters
rank them in adjacent positions) should not change the outcome. This is a desirable property in
many contexts, including in political elections where some candidates may be running on similar
policy platforms. Independence of clones is a way to avoid some forms of the “spoiler effect” that
plagues elections using plurality voting. Apart from IRV, among standard voting rules only certain
Condorcet extensions (such as Schulze’s rule, ranked pairs, split cycle, and some tournament
solutions) satisfy independence of clones [Holliday and Pacuit, 2023, Schulze, 2011], and they are
much more complicated than IRV and therefore harder to “sell” to voters and politicians.
Let us formally define independence of clones for weak orders. Given a profile 𝑃 , a set of

candidates 𝑋 ⊆ 𝐶 is a clone set if for every voter 𝑖 ∈ 𝑁 and every candidate 𝑐 ∉ 𝑋 , we have either
𝑥 ≻𝑖 𝑐 for all 𝑥 ∈ 𝑋 , or 𝑥 ∼𝑖 𝑐 for all 𝑥 ∈ 𝑋 , or 𝑐 ≻𝑖 𝑥 for all 𝑥 ∈ 𝑋 .

See Figure 8 for examples and non-examples of clone sets. We can now define the axiom:

Definition 3.1. A voting rule 𝑓 satisfies independence of clones if for all profiles 𝑃 with clone set
𝑋 ⊆ 𝐶 , letting 𝑃 be the profile obtained by removing all but one candidate 𝑥 from 𝑋 , it holds that

(1) for every 𝑐 ∉ 𝑋 , we have 𝑐 ∈ 𝑓 (𝑃) if and only if 𝑐 ∈ 𝑓 (𝑃), and
(2) 𝑥 ∈ 𝑓 (𝑃) if and only if there exists 𝑥 ∈ 𝑋 such that 𝑥 ∈ 𝑓 (𝑃).
Informally, this property states that adding or removing clones should not alter the result of the

election. In particular, non-clones either stay winning or stay losing. The only thing that might
change is that if a clone is winning, then another clone can win instead. Definition 3.1 is equivalent
to the definition for weak orders given by Schulze [2011] and by Holliday and Pacuit [2023, Section
5.3.2]. Restricted to dichotomous orders, it is equivalent to the version of the axiom defined by
Brandl and Peters [2022]. Restricted to linear orders, it is equivalent to the original definition of
Tideman [1987]. However, it is stronger than the way Tideman [1987, p. 186] proposed to define
independence of clones for weak orders (in his definition, it is not allowed for a clone to be ranked
equally to a non-clone, so the third weak order shown in Figure 8 would not qualify).

Approval-IRV satisfies independence of clones. We can show this by adapting the standard proofs
that linear-order IRV satisfies the axiom [Freeman et al., 2014, Tideman, 1987], using the fact that
cloning an alternative does not change the score of any non-clone alternative in any round of
Approval-IRV. We defer the detailed proof to the appendix (Appendix A.1).
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Approval-IRV Split-IRV

Respect for unanimous majorities
Respect for cohesive majorities
Select some majority alternative

Table 2. Comparison of majority properties satisfied by the rules.

Theorem 3.2. Approval-IRV is independent of clones.

9
𝑎 𝑐 𝑐′

𝑏

4
𝑏

𝑎

𝑐 𝑐′

2
𝑐 𝑐′

𝑎

𝑏

Fig. 9. Split-IRV fails inde-
pendence of clones.

However, Split-IRV fails independence of clones. A simple counter-
example is shown in Figure 9, where 𝑎 is eliminated with a score of 3
while other alternatives have a score of 4; then finally the clones 𝑐 and
𝑐′ win. However, when removing the clone 𝑐′ of 𝑐 from the profile, we
get a profile where the score of 𝑎 is 4.5, the score of 𝑏 is 4, and the score
of 𝑐 is 6.5. Thus, 𝑏 gets eliminated, after which 𝑎 wins the majority
vote against 𝑐 . Thus, the winner changed from 𝑐/𝑐′ to 𝑎, which is not
allowed by independence of clones. Still, there are elimination scoring
rules other than Approval-IRV that satisfy independence of clones. One example is the rule that is
like Approval-IRV, but with scoring vector 𝑠 (𝜏) = ( 12 , 0, . . . , 0) for order types 𝜏 such that 𝜏 (1) ⩾ 2
or such that |𝜏 | = 2. Note that this rule still generalizes IRV on linear orders and approval voting
on dichotomous orders.

3.2 Respecting cohesive majorities

47%
𝑎 𝑏

𝑐

𝑑

4%
𝑎

𝑏

𝑐

𝑑

25%
𝑐

𝑏

𝑑

𝑎

24%
𝑑

𝑏

𝑐

𝑎

Fig. 10. A problem with elect-
ing majority alternatives.

Another characteristic property of linear-order IRV (often known
as the majority criterion) is that if a majority of voters places some
candidate in top position, then that candidate wins. There are several
ways to define such a condition for weak orders. A weak version
would be respect for unanimous majorities [Brandl and Peters, 2022]
which would say that if a majority of voters rank the same set 𝑇 of
alternatives in top position, then only alternatives in 𝑇 should be
winners. This is satisfied by both Approval-IRV and Split-IRV. An
axiom that is intuitive but undesirably strong is select some majority
alternative which demands that if some alternative 𝑐 ∈ 𝐶 is a majority alternative (i.e., is in the top
indifference class of a majority), then all winning alternatives must be majority alternatives (noting
that there could be several). To see why this might be undesirable, consider the profile in Figure 10
where this axiom would demand that 𝑎 is the winner. However, alternative 𝑏 is strictly preferred
over 𝑎 by 49% of voters, while only 4% of voters have the opposite strict preference. Thus, there is a
good argument that 𝑏 should be the winner, and indeed it is the winner under Approval-IRV (and
it is also the Condorcet winner). In contrast, Split-IRV selects 𝑎.
We propose an axiom called “respect for cohesive majorities” that logically lies between these

two axioms (see Table 2). It says that if there is a majority of voters who rank some alternative 𝑐 on
top (so they are “cohesive”), possibly among others, then the winning alternative must be ranked
top by at least one member of that majority.

Given a profile 𝑃 , write top𝑖 = {𝑐 ∈ 𝐶 : 𝑐 ≽𝑖 𝑑 for all 𝑑 ∈ 𝐶} for the top alternatives of voter 𝑖 .

Definition 3.3. A voting rule 𝑓 respects cohesive majorities if for all profiles 𝑃 and all subsets of
voters 𝑆 ⊆ 𝑁 such that |𝑆 | > 𝑛

2 and
⋂

𝑖∈𝑆 top𝑖 ≠ ∅, we have 𝑓 (𝑃) ⊆
⋃

𝑖∈𝑆 top𝑖 .

Intuitively, if a group of 𝑛
2 + 𝑡 voters is a cohesive majority that jointly ranks 𝑐 on top, then the

group has a “default claim” that 𝑐 should be elected. If a rule wants to override this claim, the axiom
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Fig. 11. Split-IRV violates respect for cohesive majorities because it eliminates 𝑎, then 𝑏 and 𝑐 , and elects 𝑑 .

says that it must choose some alternative 𝑥 that at least 𝑡 voters in that group think is at least as
good as 𝑐 (and that they hence rank on top). Making this choice justifiably overrides the claim
because at most 𝑛

2 voters remain in the group, who do not form a majority on their own.
Figure 11 shows an example profile where a majority of voters (19 out of 37) have top sets {𝑎, 𝑏, 𝑐},
{𝑎, 𝑏}, and {𝑎, 𝑐}. They are cohesive as they agree on 𝑎. Therefore, the axiom demands that the
winning candidates are either 𝑎, 𝑏, or 𝑐 , but not 𝑑 . On the shown profile, 𝑑 is the winner under
Split-IRV, which therefore fails our axiom. Approval-IRV selects 𝑎, consistently with our axiom.

Respect for cohesive majorities is inspired by proportionality axioms, and is in fact a special case
of “generalized PSC” axiom (with |𝑇 | = 𝑘 = 1) which we discuss in Section 5. Our axiom also implies
the “weak defensive strategy criterion” [Ossipoff, 2000], which says that if a majority of voters
strictly prefers 𝑎 over 𝑏, then there should be votes that the majority can submit that ensure that 𝑏
loses. The submitted votes should be sincere (they only differ from the true preferences by including
extra indifferences). Respect for cohesive majorities implies this property, since each member of
the majority can report all candidates that they strictly prefer to 𝑏 as their top alternatives.

Aswementioned, Split-IRV fails to respect cohesivemajorities. In addition, all standard Condorcet
extensions fail the axiom, as the following result implies (see Zwicker, 2016 for definitions):

Proposition 3.4. No C2 voting rule (i.e., one that depends only on the pairwise majority margins
|{𝑖 ∈ 𝑁 : 𝑎 ≻𝑖 𝑏}| − |{𝑖 ∈ 𝑁 : 𝑏 ≻𝑖 𝑎}|, like Schulze or ranked pairs) respects cohesive majorities.

Proof. Consider the following profile:

𝑎

𝑐

𝑏

𝑎 𝑏

𝑐

𝑎 𝑏

𝑐

𝑐

𝑏

𝑎

𝑐

𝑏

𝑎

with weighted majority graph
𝑎

𝑐𝑏

1

1

1

Without loss of generality, because the voting rule is C2, we may assume 𝑐 is a winner in this
profile (otherwise we can rename alternatives in the profile but retain the same weighted majority
graph). However, a majority of voters places 𝑎 in top position and none of these voters puts 𝑐 in top
position. Therefore, by respect for cohesive majorities, 𝑐 must not be a winner, a contradiction. □

On the other hand, Approval-IRV does satisfy the axiom.10

Theorem 3.5. Approval-IRV respects cohesive majorities.

Proof. Let 𝑆 be a subset of more than 𝑛
2 voters who all rank candidate 𝑐 top. We need to show

that the winner under Approval-IRV is ranked top by some voter in 𝑆 . If 𝑐 is the winner, we are
done. Otherwise, consider the time just before 𝑐 gets eliminated. At that time, a majority of voters
(namely at least 𝑆) ranks 𝑐 on top, so it has approval score more than 𝑛

2 . Yet because it is about to
10In fact, the proof can be adapted to show that Approval-IRV satisfies generalized PSC (Definition 5.3) which is stronger
than respect for cohesive majorities (it is a type of “mutual majority criterion”). This result does not follow immediately
from Theorem 5.4 because there are slight differences between Approval-IRV and Approval-STV for 𝑘 = 1, see Remark 5.1.
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be eliminated, this is the lowest score. Therefore, for every remaining candidate 𝑥 , we see that 𝑥 is
ranked top by a majority. Since two strict majorities must intersect, it follows that there is some
voter 𝑖 ∈ 𝑆 who ranks 𝑥 top at this time, and because 𝑐 is still present, 𝑖 must have ranked 𝑥 top
from the start. Therefore, at this time all remaining alternatives are top alternatives for someone in
𝑆 , and hence this will also be true of the eventual winner. □

3.3 Characterization
We have seen that Approval-IRV satisfies independence of clones and respects cohesive majorities,
two properties that are characteristic of IRV in the linear-order context. Split-IRV fails both axioms.
We will now prove that Approval-IRV is in fact characterized by these two properties within the
class of elimination scoring rules.11 The proof is quite involved, since we need to characterize the
scoring vector for every possible order type. It appears in Appendix A.2.

Theorem 3.6. When there are at least𝑚 ⩾ 4 alternatives, Approval-IRV is the only elimination
scoring rule that satisfies independence of clones and respects cohesive majorities.

Proof sketch. We start by showing that all linear order types𝜏11...1 have score vector (1, 0, . . . , 0).
Then, most of the proof is spent on showing that the score vector of all order types on 3 and 4
alternatives must be (1, 0, . . . , 0). Respect for cohesive majorities allows us to deduce that only
the first score value can be positive, and it also imposes some bounds on that value (e.g., we
exhibit a profile showing that every scoring system where 𝜏21 gives less than 5

9 points will exhibit a
violation of the majority axiom). We can then repeatedly use independence of clones to deduce
inequalities between the scores of an order type for 4 alternatives (such as 𝜏31) and an order type
for 3 alternatives (such as 𝜏21). An interesting feature of this proof is that we need to consider the
cases of𝑚 = 3 and𝑚 = 4 simultaneously, because when only 3 alternatives exist, Split-IRV satisfies
both axioms; it only starts failing them once a fourth alternative is available.
Once we know that all order types with 3 or 4 alternatives (as well as 𝜏212) have score vector
(1, 0, . . . , 0), we then use a variety of induction steps to deduce the same result for all dichotomous
order types. Finally, another induction characterizes the score vector for all order types. □

The proof depends on constructing many families of profiles that witness violations of one of
the two axioms in the characterization. We found it helpful to use linear programs to obtain such
profiles for particular non-approval scoring systems, and then generalize these examples. To do this,
we guess (by iterating) the elimination order of the profile (for clones, the two profiles), and then
build an LP that has a continuous variable for each possible weak order, indicating the fraction of
the profile(s) made up by voters with that weak order. Since the scoring system and the elimination
order are fixed, we can encode the behavior of the elimination scoring rule as linear constraints.
The axioms in the characterization are independent. An elimination scoring rule that respects

cohesive majorities but fails independence of clones is the one that’s like Approval-IRV except
that 𝑠 (𝜏21) = ( 12 , 0) (i.e., it flips to Split-IRV when it gets down to𝑚 = 3). An elimination scoring
rule that satisfies independence of clones but fails to respect majorities is given at the very end of
Section 3.1. We leave for future work the question of whether there exists a natural rule satisfying
both axioms (but not being an elimination scoring rule).

11Freeman et al. [2014, Theorem 1] previously characterized linear-order IRV to be the only linear-order elimination scoring
rule satisfying independence of clones. However, we cannot use their result since they interpreted IRV as a social welfare
function that outputs a ranking of alternatives (the elimination order). In this setting, independence of clones is a much
stronger property. Indeed, Freeman et al. [2014] write that they “do not know whether other nontrivial runoff scoring rules
would satisfy the property” when looking at social choice functions, because their “proofs relied heavily on being able to
alter some position in the ranking”, while in our characterization we need to reason about the set of final winners.
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4 SINGLE-WINNER VOTING: INDIFFERENCE MONOTONICITY
Our second characterization of Approval-IRV has a somewhat different flavor: we are going to
show that it is the unique monotonic way to extend IRV to weak orders. To make this claim precise,
we need to be careful since IRV fails most monotonicity properties (which is in fact true for all
elimination scoring rules [Smith, 1973, Theorem 2]). However, we identify a natural notion of
“indifference monotonicity” that is satisfied by Approval-IRV.

Suppose 𝑐 ∈ 𝑓 (𝑃) is a winner given some profile 𝑃 . Monotonicity requires that if we change the
profile 𝑃 to make 𝑐 look stronger, then 𝑐 should still be the winner. However, if we swap 𝑐 with an
alternative 𝑑 above it (thereby making 𝑐 stronger), then under an elimination scoring rule we might
now have caused an earlier elimination of 𝑑 which might lead to 𝑐 losing. In a sense, the reason
for the failure is that not only did we make 𝑐 stronger, but we also made 𝑑 weaker. Our notion of
indifference monotonicity considers a very restricted class of change that makes 𝑐 stronger without
negatively affecting any other candidate.

Formally, let’s say that a 𝑐-hover is the following transformation from one weak order to another:
𝐶1 ≻ · · · ≻ 𝐶 𝑗 ≻ {𝑐} ≻ 𝐶 𝑗+2 ≻ · · · ≻ 𝐶𝑘 ↦−→ 𝐶1 ≻ · · · ≻ 𝐶 𝑗 ∪ {𝑐} ≻ 𝐶 𝑗+2 ≻ · · · ≻ 𝐶𝑘

A 𝑐-hover starts from a weak order in which 𝑐 is in a singleton indifference class, and ends in the
weak order where 𝑐 has joined the indifference class just above it (see Figure 6 in the introduction).
Note that a 𝑐-hover cannot be applied to a weak order where 𝑐 is indifferent with another alternative.
Our indifference monotonicity axiom applies only to changes corresponding to 𝑐-hovers.

Definition 4.1. A voting rule 𝑓 is indifference monotonic if for every profile 𝑃 and every 𝑐 ∈ 𝑓 (𝑃),
whenever 𝑃 is obtained from 𝑃 by applying 𝑐-hovers to some votes in 𝑃 , we have 𝑐 ∈ 𝑓 (𝑃).
We now show that Approval-IRV satisfies indifference monotonicity.

Theorem 4.2. Approval-IRV is indifference monotonic.

Proof. Let 𝑓 be Approval-IRV, let 𝑤 ∈ 𝑓 (𝑃), and let 𝑃 be obtained from 𝑃 by applying some
𝑤-hovers. Suppose that in 𝑃 , Approval-IRV eliminates candidates in the order 𝑐1, . . . , 𝑐𝑚−1,𝑤 . We
will show that this is also a valid elimination order in 𝑃 , which implies that𝑤 ∈ 𝑓 (𝑃), as required.

Suppose for a contradiction that this was not the case, and let round 1 ⩽ 𝑡 ⩽ 𝑚 − 1 be the first
time when in 𝑃 , Approval-IRV cannot eliminate candidate 𝑐𝑡 (which can be eliminated in round
𝑡 under 𝑃 ). Let us compare the scores of candidates at this point in 𝑃 and 𝑃 after the elimination
of candidates 𝑐1, . . . , 𝑐𝑡−1. Note that, by definition of 𝑤-hover, every voter has the same current
top indifference class under 𝑃 and 𝑃 , except that some voters may additionally have𝑤 in their top
indifference class under 𝑃 . (Some voters’ top indifference class might be {𝑤} under both profiles,
but under 𝑃 it might be {𝑤} because𝑤 was hovered into a bigger indifference class whose other
members have by now been eliminated.) Thus, all candidates have the same scores under 𝑃 and 𝑃 ,
except that𝑤 may have a higher score under 𝑃 . But under 𝑃 , the score of 𝑐𝑡 was lowest (and thus
weakly lower than the score of𝑤 ), and so the same is true in 𝑃 , contradicting our assumption that
𝑐𝑡 could not be eliminated at this time by Approval-IRV. □

We can now state our second characterization of Approval-IRV. Here, we say that a voting rule
𝑓 is consistent with IRV if for every profile 𝑃 of linear orders, 𝑓 (𝑃) is the set of IRV winners.
Theorem 4.3. Approval-IRV is the unique elimination scoring rule that is consistent with IRV on

profiles of linear orders and satisfies indifference monotonicity.

Proof Sketch. Consistencywith IRV implies that linear ordersmust have score vector (1, 0, . . . , 0).
Observe that any order type 𝜏 can be obtained from a linear order by successively applying candidate-
hovers, for example 𝜏111111 → 𝜏21111 → 𝜏3111 → 𝜏312. Using indifference monotonicity, this allows
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us to inductively deduce that every order type has score vector (1, 0, . . . , 0) by constructing coun-
terexample profiles ruling out all other score vectors. The full proof appears in Appendix A.3. □

The properties of this characterization result are logically independent. Split-IRV is an elimination
scoring rule that is consistent with IRV but fails indifference monotonicity. An elimination scoring
rule that satisfies indifference monotonicity (but is not consistent with IRV) can be constructed
by extending the Baldwin rule instead of IRV. For this, take the elimination scoring rule which
associates to each order type 𝜏 the Borda-style scoring vector 𝑠 (𝜏) = (𝑚 − 1,𝑚 − 1 − 𝜏 (1),𝑚 −
1 − 𝜏 (1) − 𝜏 (2), . . . ,𝑚 − 1 − ∑𝑘−1

𝑖=1 𝜏 (𝑖)). One can use the same proof as in Theorem 4.2 to show
that this rule is indifference monotonic. Finally, there are rules that satisfy both properties of the
characterization but that are not elimination scoring rules, such as the rule that returns the result
of IRV on profiles of linear orders, and the whole set of candidates 𝐶 when the profile is not linear.

5 MULTI-WINNER VOTING
In a multi-winner election, our goal is to select a committee of 𝑘 candidates from 𝐶 . The analog of
IRV for multi-winner elections is called the Single Transferable Vote (STV), which is defined in a
way that provides proportional representation (giving groups of voters an amount of representation
in the committee that is proportional to their size). STV is used for political elections in Scotland,
Ireland, and New Zealand, among other places.
STV can be extended to work for weak orders just like how we defined Approval-IRV. This

gives rise to a rule we call Approval-STV. (We will not describe STV for linear orders separately,
since it is just the restriction of Approval-STV to the case when everyone submits a linear order.)
Approval-STV works by assigning each voter a budget of 1 monetary unit (often referred to as the
weight of the voter). Voters will spend their budgets on electing candidates that they rank highly,
and because voters start out with equal budgets, this produces a proportional outcome. The cost (or
quota) of electing a candidate is 𝑞 = 𝑛/(𝑘 + 1), where 𝑛 is the number of voters and 𝑘 is the number
of seats.12 Repeatedly, Approval-STV looks for a candidate that appears in the top indifference class
of voters who together have a remaining budget of strictly more than 𝑞. If such a candidate exists,
one is selected and added to the committee𝑊 , and the voters placing it in their top indifference
class pay 𝑞 for it (with this cost divided between them); then this winning candidate is removed
from the profile. If no such candidate exists, some candidate is eliminated and removed from the
profile, and we go to the next iteration. The method is described in pseudocode in Figure 12.

Clearly this rule elects at most 𝑘 candidates, because after 𝑘 selections, 𝑘𝑞 money has been spent.
In the beginning, the total amount of money was (𝑘 + 1)𝑞, so only 𝑞 money is left, and therefore
there can’t be any additional candidates whose supporters have a remaining budget of strictly more
than 𝑞. The rule is in fact guaranteed to select at least 𝑘 (and therefore exactly 𝑘) candidates; this
can be deduced from Theorem 5.4 below (with 𝑆 = 𝑁 , 𝑇 = 𝐶 , and ℓ = 𝑘).
Our description of Approval-STV above and in Figure 12 left several details vague: it did not

specify (1) how to select the next winning candidates should several candidates be eligible, (2) how
to divide the cost 𝑞 of the candidate among its supporters, and (3) how to decide which candidate
to eliminate. The reason we left these vague is that our main result (that Approval-STV satisfies an
axiom providing proportional representation) holds no matter how these three issues are decided.
However, it is worth noting how STV is commonly used, for example in Scotland: (1) we select
the candidate whose supporters have the highest amount of remaining budget, (2) the cost is

12The quota 𝑞 = 𝑛/(𝑘 + 1) is known as the Droop quota which we will use throughout. However, everything we say
holds analogously for the Hare quota 𝑞 = 𝑛/𝑘 , with strict inequalities appropriately replaced by weak inequalities. For the
Droop quota, note that we require that supporters of a candidate have strictly more than 𝑞 money, but we only charge the
supporters exactly 𝑞 money. This is more elegant and robust than taking 𝑞 = 𝑛/(𝑘 + 1) + 𝜀 or rounding the quota up.
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𝑏𝑖 ← 1 for all 𝑖 ∈ 𝑁 (the budget of each voter)
𝑅 ← 𝐶 (remaining candidates)
𝑊 ← ∅ (selected candidates)
while 𝑅 ≠ ∅ do

supp(𝑐) ← {𝑖 ∈ 𝑁 : 𝑐 ≽𝑖 𝑅} for all 𝑐 ∈ 𝑅
if there is 𝑐 ∈ 𝑅 with

∑
𝑖∈supp(𝑐 ) 𝑏𝑖 > 𝑞 then

select one such candidate 𝑐
reduce the budgets (𝑏𝑖 )𝑖∈supp(𝑐 ) by a total amount of 𝑞
𝑊 ←𝑊 ∪ {𝑐}
𝑅 ← 𝑅 \ {𝑐}

else
select some candidate 𝑐 ∈ 𝑅 to eliminate
𝑅 ← 𝑅 \ {𝑐}

return𝑊

Fig. 12. Approval-STV

divided by multiplying the remaining budget of each supporter by a common factor (“Gregory
method”), and (3) the candidate whose supporters have the lowest amount of remaining budget is
eliminated. However, there are other possible choices, including mirroring the payment scheme of
the Method of Equal Shares which has been proposed for approval-based multi-winner elections
and for participatory budgeting [Peters et al., 2021, Peters and Skowron, 2020].

Remark 5.1. Note that Approval-IRV is the same thing as Approval-STV for 𝑘 = 1 with Hare
quota, but not with Droop quota. For instance, In the example shown in Figure 3, more than 𝑞 = 𝑛/2
(the Droop quota for 𝑘 = 1) voters rank 𝑏 on top. Thus, Approval-STV (with Droop quota) would
not do any elimination and instead immediately select 𝑏. Approval-IRV performs eliminations and
ends up selecting alternative 𝑎. For the reason we do it this way, see Figure 10 and the surrounding
discussion, and also note that Approval-STV fails independence of clones even for 𝑘 = 1 (since a
majority alternative could stop being a majority alternative if cloned). □

One can also define Split-STV. It is the rule that replaces weak orders by weighted linear orders
breaking indifferences in all possible ways, and then applies linear-order STV [Warren, 1996].
Equivalently, one can adapt the algorithm in Figure 12 to say that if a voter supports 𝑡 candidates,
then the voter is only willing to contribute 𝑏𝑖/𝑡 (instead of 𝑏𝑖 ) to elect a supported candidate.
STV is a rule providing proportional representation. Dummett [1984, pp. 282–283] formalized

this using a property saying that groups of voters should have a representation in the winning
committee proportional to the group’s size. He argued via an example that STV satisfies his property.
Tideman [1995, footnotes 1 and 2] termed this axiom proportionality for solid coalitions (PSC) and
gave a proof sketch that STV satisfies it. Woodall [1994, 1997] refers to it as “Droop proportionality”.
Aziz and Lee [2020, Appendix C] give a formal proof that STV satisfies PSC.

To define the axiom, for a set 𝑇 ⊆ 𝐶 of candidates, let us say that a weak order ≽ is 𝑇 -supporting
if 𝑇 ≽ 𝐶 \𝑇 , i.e., if for every 𝑡 ∈ 𝑇 and every 𝑐 ∈ 𝐶 \𝑇 , we have 𝑡 ≽ 𝑐 . A group 𝑆 ⊆ 𝑁 of voters is
𝑇 -supporting if every voter in 𝑆 is 𝑇 -supporting. For linear orders, PSC is defined as follows.

Definition 5.2 (Proportionality for solid coalitions). Let 𝑃 be a profile of linear orders. Let 𝑞 =

𝑛/(𝑘 + 1). A committee𝑊 ⊆ 𝐶 of size 𝑘 satisfies proportionality for solid coalitions (PSC) if for all
𝑆 ⊆ 𝑁 with |𝑆 | > ℓ · 𝑞 and all𝑇 ⊆ 𝐶 with |𝑇 | ⩾ ℓ such that 𝑆 is𝑇 -supporting, we have |𝑊 ∩𝑇 | ⩾ ℓ .

Aziz and Lee [2020] propose a way to generalize PSC to weak orders. Consider a group 𝑆 that is
𝑇 -supporting. Note that since we have weak orders, it is not necessary that every voter in 𝑆 strictly
prefers 𝑇 above all other alternatives, see Figure 13. Instead, being 𝑇 -supporting also allows there
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𝑏 𝑐 𝑑

𝑡2

𝑡1 𝑡3 𝑎 𝑏

𝑑

𝑐

voters that are 𝑇 -supporting

𝑡1

𝑡2 𝑎
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𝑏 𝑐 𝑑

𝑎

𝑡1 𝑡2

𝑡3

𝑏 𝑐 𝑑

not 𝑇 -supporting

Fig. 13. An illustration of the definition of generalized PSC. For 𝑇 = {𝑡1, 𝑡2, 𝑡3}, the 5 voters in the left box
are 𝑇 -supporting, since every alternative in 𝑇 is ranked weakly higher than every alternative not in 𝑇 . The
closure of 𝑇 with respect to the 5 voters is {𝑡1, 𝑡2, 𝑡3, 𝑎, 𝑏}, since some voters rank 𝑎 and/or 𝑏 on the same level
as an alternative from 𝑇 . The voters in the right box are not 𝑇 -supporting because of where they rank 𝑎.

to be one “mixed” indifference class that contains both alternatives from within and from outside
𝑇 , provided that all indifference classes above the mixed one only contain 𝑇 -alternatives, and all
indifference classes below it do not contain any 𝑇 -alternatives.

For a 𝑇 -supporting group 𝑆 , let us define the closure of 𝑇 with respect to 𝑆 as

closure𝑆 (𝑇 ) = {𝑐 ∈ 𝐶 : for some 𝑖 ∈ 𝑆 and some 𝑡 ∈ 𝑇 , we have 𝑐 ≽𝑖 𝑡}.
That is, the closure of𝑇 contains the alternatives in𝑇 together with all alternatives that appear in a
“mixed” indifference class, looking at the voters in 𝑆 . The caption of Figure 13 contains an example.
Generalized PSC requires that sufficiently many alternatives are elected from the closure of 𝑇 .13

Definition 5.3 (Generalized PSC, Aziz and Lee, 2020). Consider a profile of 𝑛 weak orders, and let
𝑞 = 𝑛/(𝑘 + 1). A committee𝑊 ⊆ 𝐶 of size 𝑘 satisfies generalized PSC if for all 𝑆 ⊆ 𝑁 with |𝑆 | > ℓ ·𝑞
and all 𝑇 ⊆ 𝐶 with |𝑇 | ⩾ ℓ such that 𝑆 is 𝑇 -supporting, we have |𝑊 ∩ closure𝑆 (𝑇 ) | ⩾ ℓ .

Generalized PSC for committee size 𝑘 = 1 and for sets 𝑇 with |𝑇 | = 1 is equivalent to respect for
cohesive majorities (Definition 3.3). Therefore, Split-STV fails generalized PSC even for 𝑘 = 1, by
the example shown in Figure 11.14 On the other hand, Approval-STV satisfies the axiom.

Theorem 5.4. Approval-STV satisfies generalized PSC.

Proof. Let𝑊 be the committee elected by Approval-STV. Let 𝑆 ⊆ 𝑁 be a group of voters with
|𝑆 | > ℓ𝑞 and let 𝑇 ⊆ 𝐶 with |𝑇 | ⩾ ℓ be such that 𝑆 is 𝑇 -supporting. Write 𝑈 = closure𝑆 (𝑇 ). We
have to prove that |𝑊 ∩𝑈 | ⩾ ℓ .
Throughout the execution of Approval-STV, let 𝑠 = |𝑊 ∩𝑈 | denote the current ‘satisfaction’

of 𝑆 and let 𝑟 = |𝑅 | denote the current number of ‘remaining’ (neither selected nor eliminated)
candidates in 𝑇 . We claim that the following invariant is true throughout the execution:

𝑠 + 𝑟 ⩾ ℓ .

Certainly this holds at the start because 𝑟 = |𝑇 | ⩾ ℓ . At the end of the execution, we have 𝑟 = 0
(because at the end, all candidates have been either selected or eliminated), and hence the claim
implies 𝑠 ⩾ ℓ , proving the theorem. To prove the claim, we will show that every ‘action’ (selection
or elimination of a candidate) of Approval-STV preserves the correctness of the claim.
13Brill and Peters [2023, Section 4] propose a stronger proportionality axiom than generalized PSC that also works for weak
orders, called rank-PJR+. Their axiom is satisfied by the Expanding Approvals Rule of Aziz and Lee [2020], but it is failed by
STV even for linear orders, and so it is also failed by Approval-STV.
14A much weaker way of defining PSC for weak orders is to define “𝑇 -supporting” as meaning𝑇 ≻ 𝐶 \𝑇 , so that no voter
is indifferent between alternatives in𝑇 and outside𝑇 (so only the two left-most examples in Figure 13 count). In that case
closure𝑆 (𝑇 ) = 𝑇 , so PSC just requires |𝑊 ∩𝑇 | ⩾ ℓ . This definition is satisfied by both Approval-STV and Split-STV.
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Whenever a candidate outside 𝑇 is selected, then 𝑠 may go up and 𝑟 will stay constant, so the
claim stays correct. When a candidate in𝑇 is selected, then 𝑠 goes up by 1 and 𝑟 goes down by 1, so
𝑠 + 𝑟 stays constant, and the claim stays correct. If a candidate outside 𝑇 is eliminated, then 𝑠 + 𝑟
stays constant, and the claim stays correct. If a candidate in 𝑇 is eliminated, but currently we have
𝑠 + 𝑟 > ℓ , then 𝑠 stays constant and 𝑟 goes down by 1, so the claim will hold true after elimination.

So the only case to worry about is that a candidate from 𝑇 is eliminated at a time when 𝑠 + 𝑟 = ℓ .
We will prove that this cannot happen. For contradiction, suppose it does happen. Because a
candidate in 𝑇 is about to be eliminated, at least one candidate in 𝑇 has always been present thus
far. Therefore, by definition of 𝑈 as the closure of 𝑇 , up to now, the top indifference class of every
voter in 𝑆 has been a subset of𝑈 . Hence, thus far, voters in 𝑆 have only spent money on candidates
in𝑈 . The current satisfaction is 𝑠 . Therefore, the voters in 𝑆 can have paid at most 𝑠𝑞 money until
now. The voters in 𝑆 started out with more than ℓ𝑞 money. Hence, the voters in 𝑆 together have
more than (ℓ − 𝑠)𝑞 = 𝑟𝑞 money left.
We prove that at least one of the remaining 𝑟 candidates in 𝑇 has supporters who together have

more than 𝑞 money left. It follows by definition of Approval-STV that in this step, a candidate is
selected instead of eliminated, which means that the current case is impossible. Label the remaining
candidates in𝑇 as 𝑐1, . . . , 𝑐𝑟 . Suppose for a contradiction that for each of them, the voters who place
that candidate in their top indifference class have at most 𝑞 money left. Write 𝑆1 ⊆ 𝑆 for all the
voters in 𝑆 who currently place 𝑐1 top. Write 𝑆2 for all voters in 𝑆 \ 𝑆1 who currently place 𝑐2 top,
and so on. Note that for each 𝑗 ∈ [𝑟 ], the voters in 𝑆 𝑗 have at most 𝑞 money left. However, because
𝑇 ≽𝑖 𝐶 \ 𝑇 for all 𝑖 ∈ 𝑆 , it is the case that every voter in 𝑆 places at least one of the remaining
candidates in 𝑇 in their top indifference class. Hence 𝑆 = 𝑆1 ∪ · · · ∪ 𝑆𝑟 . But the 𝑆 𝑗 are pairwise
disjoint, and so it follows that 𝑆 has at most 𝑟𝑞 money left, a contradiction. □

This proof also shows that linear-order STV satisfies classic PSC, in an arguably clearer way
than existing proofs in the literature.

6 EXPERIMENTS
In this last section, we will experimentally compare the generalizations of IRV and STV to weak
orders using synthetic and real data. We tested our rules on a variety of datasets, including synthetic
data (sampled from variousmodels such as impartial culture, mixture ofMallows and Euclidean), and
real data (experiments on voting methods conducted during French presidential elections [Bouveret
et al., 2018, Delemazure and Bouveret, 2024], and the actual votes in elections that took place in
Dublin, Ireland, from Preflib [Mattei and Walsh, 2013]). Details on these datasets can be found in
Appendix B.1.

𝑣
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𝑏

𝑐

𝑑

𝑒

𝑟 𝑟

Fig. 14. A voter with prefer-
ences {𝑎, 𝑏} ≻ {𝑐, 𝑑} ≻ {𝑒}.

All datasets concern profiles of linear order, so we need a method to
turn them into weak orders.We used two suchmethods. The “coin-flip”
method with parameter 𝑝 ∈ [0, 1] works as follows: in an order ≻,
for each pair of consecutively ranked candidates 𝑎 and 𝑏, we add a
tie between them (and thus put them in the same indifference class)
with probability 𝑝 . For example, for the linear order 𝑎 ≻ 𝑏 ≻ 𝑐 ≻ 𝑑 we
throw 3 independent coins, one for each occurrence of the “≻” symbol,
and replace a strict preference by an indifference when the coin comes
up heads (which happens with probability 𝑝). If the coins come up
tails, heads, tails, the resulting weak order is {𝑎} ≻ {𝑏, 𝑐} ≻ {𝑑}. The
“radius” method is specific to Euclidean models, in which voters 𝑣 and
candidates 𝑐 are placed in random locations 𝑝 (𝑣), 𝑝 (𝑐) ∈ R𝑑 in Euclidean space. The method is
parameterized by a radius 𝑟 ⩾ 0, which from the perspective of voter 𝑣 divides the candidates into
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Fig. 15. Average Borda score of the winner (normalized by dividing by 𝑛) for various datasets.

sets𝐶𝑘 = {(𝑘 − 1)𝑟 ⩽ ∥𝑝 (𝑐) −𝑝 (𝑣)∥ < 𝑘𝑟 }. This produces the weak order𝐶1 ≻ 𝐶2 ≻ . . . for voter 𝑣 .
Figure 14 illustrates this model with an example.

6.1 Evaluation of the winner
First, we compare the single-winner rules: Approval-IRV and Split-IRV. We randomly sample 10 000
instances from each of our datasets (for real data, we sample voters at random with replacement).
For the coin-flip method, we tested values of 𝑝 between 0 (introducing no indifferences) and 0.9;
we exclude 𝑝 = 1 since this leads to complete indifference. For the radius method, we tested values
of 𝑟 between 0 (no indifferences) and 0.5. Each instance has 𝑛 = 500 voters and𝑚 = 10 candidates,
except for real data where we keep the original number of candidates𝑚 (between 9 and 14).
In Figure 15, we evaluate the winning candidate chosen by the two rules in terms of its Borda

score, where the Borda score is computed with respect to the original profile of linear orders. While
one might expect that introducing more indifferences (higher 𝑝 or 𝑟 ) would lead our rules to make
lower-quality decision, in fact the opposite is the case. In almost all datasets, the Borda score of
the candidate selected by linear-order IRV in the original profile (𝑝 = 0 or 𝑟 = 0) is lower than the
Borda score of the candidate selected by Approval-IRV and Split-IRV, on average over the instances.
(The main exception is impartial culture.) We believe that the reason for this is that linear-order IRV
depends mostly on plurality scores, whereas the weak orders allow the rules to identify candidates
that are frequently ranked in high positions. Figure 15 also shows that the candidate selected by
Approval-IRV has higher Borda score than Split-STV, consistently across datasets.

Fig. 16. Map of elections, showing the difference in
Borda score between the Approval-IRV and Split-
IRV winner in the coin-flip model, with blue dots
indicating that Approval-IRV selected a winner
with higher Borda score.

We checked that this observation is consistent
over many random distributions over profiles, us-
ing the map of elections framework [Boehmer et al.,
2022, Figure 1(a), 10×50 isomorphic swap]. Fig-
ure 16 shows a dot for each profile of the map,
which is colored according to the difference in
Borda score between the winner of Approval-IRV
and Split-IRV, where we used the coin-flip method
to transform the linear-order profile into a weak
order one. For each dot, we averaged over the pa-
rameter 𝑝 = 0.1, 0.2, . . . , 0.9 of the coin-flip method
and over 50 random sampled weak order profiles
for each 𝑝 . In order to highlight the differences,
we set the color scale to range from −100 to 100,
though some datasets have a difference higher than
2 000. (In Appendix B.3, we show the same figure
with a broader scale from −800 to 800.) We observe
that the Borda score of the Approval-IRV winner
is generally higher than the one of the Split-IRV
winner (blue dots), especially for structured preferences like single-peaked ones. For profiles close
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Fig. 18. Frequency of agreement between the rule and linear-order IRV for various datasets.

to those drawn from impartial culture, the difference is less pronounced (similar to what we see in
Figure 15, and some datasets show an advantage for Split-IRV. For profiles with little difference
between voters (those close to identity) show almost no difference between the two rules, as there
is often a clear winner that both rules will select.
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Fig. 17. Average distortion of the winner.

Figure 17 confirms these findings with respect
to the average distortion, a quality measure of the
selected candidate in terms of Euclidean distance
instead of Borda scores (lower is better, see Appen-
dix B.2 for the definition). For large 𝑝 or 𝑟 , Approval-
IRV frequently selects the optimum candidate (dis-
tortion = 1). Finally, Figure 18 shows the probability
that the rules select the same candidate as linear-order IRV on the original profile. We see that
Split-IRV is more “similar” to IRV than is Approval-IRV, consistently across datasets. Additional
discussion and more results (including about Condorcet winners) are shown in Appendix B.2.

6.2 Multi-winner
We now compare the multi-winner rules: Approval-STV and Split-STV. We also study the Expending
Approvals Rules (EAR) [Aziz and Lee, 2020]. Approval-STV and EAR both satisfy the generalized
PSC axiom for proportional representation, while Split-STV fails it. In our experiments, we wish to
visually distinguish these rules, to allow us to judge their proportionality. We follow the experi-
mental setup introduced by Elkind et al. [2017], based on random 2D-Euclidean profiles. In our
experiments, we used 𝑛 = 100 voters,𝑚 = 100 candidates and 𝑘 = 10 seats.
We considered two models: sampling the voter and candidate positions from the unit square,

or from the unit disc. For each model, we sample 10 000 profiles. We convert them to weak order
profiles using the radius method (𝑟 = 0.1, 0.2, 0.3), and compute the winning committees of the
three rules. Figure 19 shows the positions of the 10 winning candidates, superimposing the results
from all profiles. Intuitively, we expect a rule to be more proportional if the distribution of winners
is closer to the distribution of voters (here, the uniform distribution over the unit square or disc).

Our first observation is that the more indifference we introduce (i.e., a larger radius 𝑟 ), the further
is the distribution of the positions of winning candidates from the distribution of voter positions.
For 𝑟 = 0.3, winning candidates are concentrated roughly midway between the edges and the center
of the distribution. A second observation is that for 𝑟 = 0.1, Split-STV appears most faithful to the
voter positions, and EAR the least faithful; but when 𝑟 = 0.3, the order is reversed, as EAR is the
most faithful and Split-STV the least faithful. In both cases, Approval-STV is between the two.

7 CONCLUSION AND FUTUREWORK
We have studied generalizations of IRV and STV to weak orders and have given formal argu-
ments why the “Approval” generalization behaves better than the “Split” generalization. However,
there are additional avenues for comparing these two rules. For example, we have not looked
into strategic aspects, and the two rules may well differ in how often voters can obtain a better



20 Théo Delemazure and Dominik Peters

Split-STV Approval-STV EAR

𝑟
=
0.
1

𝑟
=
0.
2

𝑟
=
0.
3

(a) Unit square

Split-STV Approval-STV EAR

𝑟
=
0.
1

𝑟
=
0.
2

𝑟
=
0.
3

(b) Unit disc

Fig. 19. Comparing multi-winner rules on 2D-Euclidean profiles.

outcome by misrepresenting their preferences. Another direction would be to study the utilitarian
welfare provided by these rules, for example in the metric distortion model, where the worst-case
performance of linear-order IRV has been studied [Anagnostides et al., 2022, Anshelevich et al.,
2018], though the model would need to be generalized to weak orders.
Assuming there are no ties (see Footnote 9), computing Approval-IRV can clearly be done in

polynomial time, though just like for linear-order IRV the task cannot be efficiently parallelized
[Csar et al., 2017], because counting needs to proceed in rounds. Since some jurisdictions (no-
tably Australia) count IRV elections by hand using paper ballots, it makes sense to optimize the
computation in terms of the number of times each ballot needs to be handled, which Ayadi et al.
[2019] analyze using a query complexity model. It may be worth performing such an analysis
for Approval-IRV. It seems that this rule can still be easily counted by hand, as follows: For each
candidate, make a stack of ballot papers that vote for that candidate. If a ballot votes for 𝑡 ⩾ 2
candidates, assign the ballot to any one of the 𝑡 stacks, and additionally take 𝑡 − 1 tokens (e.g.,
specially colored pieces of paper) and add one to each of the other 𝑡 − 1 stacks. Determine the
canddidate 𝑐 with the smallest stack and eliminate it, by throwing away all the tokens in the stack
and reassigning the ballot papers in the stack. To reassign, if a ballot paper is indifferent between 𝑐
and some other non-eliminated candidate 𝑑 , then add the ballot paper to the stack of 𝑑 in exchange
for one of the tokens in that stack. Otherwise, we need to pass to the next-highest indifference
class of the ballot, assign the ballot paper to one of the candidates in that indifference class, and
add tokens to other stacks as appropriate. Note that Split-IRV does not admit a similar protocol,
since we need to update the scores of all top-ranked candidates after each elimination.
As to whether it would be desirable to move from linear-order IRV to Approval-IRV, future

work could address this question from several angles. User studies could explore whether voters
understand how weak order ballots work, and whether they understand Approval-IRV. Generally,
approval-based voting methods suffer from an intuitive (mis)impression that some voters get “more
votes” than others by ranking several candidates first, and it would be interesting whether this
objection can be answered in an intuitively persuasive way. Models of political ideology (such as
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strategic candidacy models) could be used to understand the impact on the political landscape of a
move to Approval-IRV. Finally, it would be interesting to provide a theoretical foundation for our
experimental finding that Approval-IRV selects higher-quality candidates (with respect to Borda
scores or distortion) than linear-order IRV.
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A DELAYED PROOFS
A.1 Proof of Theorem 3.2

Theorem 3.2. Approval-IRV is independent of clones.

Proof. We show that Approval-IRV satisfies independence of clones. Write 𝑓 for Approval-IRV.
For a profile 𝑃 , we will use the following shorthand notation: For ℓ ∈ 𝐶 , we write 𝑃 − ℓ for

the profile 𝑃𝐶\{ℓ } with ℓ deleted. For a set 𝑋 ⊆ 𝐶 , we write 𝑃 − 𝑋 for the profile 𝑃 |𝐶\𝑋 with the
alternatives in 𝑋 deleted. Similarly, for 𝑥 ∈ 𝑋 , we write 𝑃 − 𝑋 + 𝑥 for the profile 𝑃 | (𝐶\𝑋 )∪{𝑥 } with
all alternatives in 𝑋 except for 𝑥 deleted.
The following lemma connects the scores of the alternatives in the profile 𝑃 and in the profile

𝑃 − 𝑋 + 𝑥 , where 𝑋 is a clone set. It is the key to the proof working, and other rules like Split-IRV
do not have the same property, explaining why the proof does not work for them.

Lemma A.1. Let 𝑃 be a profile defined on alternative set 𝐶 with clone set 𝑋 ⊆ 𝐶 . Let 𝑥 ∈ 𝑋 . Then

• every 𝑐 ∈ 𝐶 \ 𝑋 has the same approval score in 𝑃 and 𝑃 − 𝑋 + 𝑥 , and
• the approval score of 𝑥 in 𝑃 − 𝑋 + 𝑥 is at least as high as the approval score of every clone
alternative 𝑥 ′ ∈ 𝑋 in 𝑃 .

Proof. For the first point, observe that for 𝑐 ∈ 𝐶 \ 𝑋 , 𝑐 is ranked in the top indifference class of
a voter 𝑖 in 𝑃 iff 𝑐 ≽𝑖 𝑑 for all 𝑑 ∈ 𝐶 iff (by definition of clone set) 𝑐 ≽𝑖 𝑑 for all 𝑑 ∈ (𝐶 \𝑋 ) ∪ {𝑥} iff
it is ranked in the top indifference class of 𝑖 in 𝑃 − 𝑋 + 𝑥 .
For the second point, fix 𝑥 ∈ 𝑋 and let 𝑥 ′ ∈ 𝑋 . Then if 𝑥 ′ is ranked in the top indifference class

of a voter 𝑖 in 𝑃 , then 𝑥 ′ ≽𝑖 𝑑 for all 𝑑 ∈ 𝐶 and in particular for all 𝑑 ∈ 𝐶 \ 𝑋 . Thus, by definition
of clone set, we also have 𝑥 ≽𝑖 𝑑 for all 𝑑 ∈ 𝐶 \ 𝑋 , and hence 𝑥 is ranked in the top indifference
class of 𝑖 in 𝑃 −𝑋 + 𝑥 . So the number of voters with 𝑥 ′ in their top indifference class in 𝑃 is weakly
lower than the number with 𝑥 in their top indifference class in 𝑃 − 𝑋 + 𝑥 . □

By induction on𝑚, we prove the following statement:
For every profile 𝑃 defined on a set 𝐶 of𝑚 alternative including a non-empty clone
set 𝑋 ⊆ 𝐶 , the following hold: [𝐻 stands for hypothesis]
𝐻1 (𝑃,𝑋 ): for all 𝑐 ∈ 𝐶 \ 𝑋 , 𝑐 ∈ 𝑓 (𝑃) if and only if 𝑐 ∈ 𝑓 (𝑃 − 𝑋 + 𝑥) for all 𝑥 ∈ 𝑋 .
𝐻2 (𝑃,𝑋 ): we have 𝑓 (𝑃) ∩ 𝑋 ≠ ∅ if and only if 𝑥 ∈ 𝑓 (𝑃 − 𝑋 + 𝑥) for all 𝑥 ∈ 𝑋 .

Note that the statement is trivially true if |𝑋 | = 1 since then 𝑃 −𝑋 + 𝑥 = 𝑃 . The statement is also
obvious when |𝑋 | = |𝐶 | since then 𝑃 − 𝑋 + 𝑥 is a profile in which only 1 alternative exists. Now,
the base case𝑚 = 2 is easy to see, since then either |𝑋 | = 1 or |𝑋 | = 2 = |𝐶 |.
So let 𝑚 ⩾ 3, assume we have shown the statement for𝑚 − 1, and let 𝑃 be a profile with𝑚

alternatives 𝐶 including clone set 𝑋 ⊆ 𝐶 with 2 ⩽ |𝑋 | ⩽ 𝑚 − 1.
Let us first note a simple fact that follows because Approval-IRV is a neutral rule (invariant

under renaming alternatives). For every non-clone alternative 𝑐 ∈ 𝐶 \ 𝑋 , we have

𝑐 ∈ 𝑓 (𝑃 − 𝑋 + 𝑥) for some 𝑥 ∈ 𝑋 ⇐⇒ 𝑐 ∈ 𝑓 (𝑃 − 𝑋 + 𝑥) for all 𝑥 ∈ 𝑋,

and we have that

𝑥 ∈ 𝑓 (𝑃 − 𝑋 + 𝑥) for some 𝑥 ∈ 𝑋 ⇐⇒ 𝑥 ∈ 𝑓 (𝑃 − 𝑋 + 𝑥) for all 𝑥 ∈ 𝑋 .

This just follows because for two clones 𝑥, 𝑥 ′ ∈ 𝑋 , by definition of clone sets, the profiles 𝑃 −𝑋 + 𝑥
and 𝑃 − 𝑋 + 𝑥 ′ are identical up to the permutation that exchanges 𝑥 and 𝑥 ′. These equivalences
mean that we can use the inductive hypotheses in the “all 𝑥” version but only need to prove them
in the “some 𝑥” version.
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We first prove 𝐻1 (𝑃,𝑋 ). Let 𝑐 ∈ 𝑓 (𝑃) \ 𝑋 be a non-clone alternative that wins in 𝑃 . We need to
show that 𝑐 ∈ 𝑓 (𝑃 − 𝑋 + 𝑥) for some 𝑥 ∈ 𝑋 . Note that by definition of elimination scoring rules,
𝑐 ∈ 𝑓 (𝑃) means that there is an alternative ℓ with lowest score in 𝑃 such that 𝑐 ∈ 𝑓 (𝑃 − ℓ).

• Consider first the case that ℓ is not a clone alternative, ℓ ∉ 𝑋 . Take any 𝑥 ∈ 𝑋 . By Lemma A.1,
ℓ is also a lowest-scoring alternative in 𝑃 −𝑋 + 𝑥 . Thus by definition of elimination scoring
rules, 𝑓 ((𝑃−𝑋+𝑥)−ℓ) ⊆ 𝑓 (𝑃−𝑋+𝑥), and hence it suffices to show that 𝑐 ∈ 𝑓 ((𝑃−𝑋+𝑥)−ℓ) =
𝑓 ((𝑃 − ℓ) − 𝑋 + 𝑥). But this follows from 𝐻1 (𝑃 − ℓ, 𝑋 ) because 𝑐 ∈ 𝑓 (𝑃 − ℓ).

• Consider next the case that ℓ ∈ 𝑋 , and take any 𝑥 ∈ 𝑋 \ {ℓ}, which exists since |𝑋 | ⩾ 2.
Then applying𝐻1 (𝑃 − ℓ, 𝑋 \ {ℓ}) to 𝑐 ∈ 𝑓 (𝑃 − ℓ), we get that 𝑐 ∈ 𝑓 ((𝑃 − ℓ) − (𝑋 \ {ℓ}) +𝑥) =
𝑓 (𝑃 − 𝑋 + 𝑥) where the last equality follows because the two profiles are the same since
ℓ ∈ 𝑋 .

Conversely, suppose that 𝑐 ∈ 𝑓 (𝑃 − 𝑋 + 𝑥) for all 𝑥 ∈ 𝑋 .

• Suppose that there exists a clone alternative 𝑥 ′ ∈ 𝑋 which is a lowest-scoring alternative in
𝑃 . Noting that |𝑋 | ⩾ 2, choose any other clone 𝑥 ∈ 𝑋 \ {𝑥 ′} and note that 𝑐 ∈ 𝑓 (𝑃 −𝑋 + 𝑥)
by assumption. Since 𝑥 ′ is lowest-scoring in 𝑃 , by definition of elimination scoring rules,
𝑓 (𝑃 − 𝑥 ′) ⊆ 𝑓 (𝑃). By 𝐻1 (𝑃 − 𝑥 ′, 𝑋 \ {𝑥 ′}), it follows from 𝑐 ∈ 𝑓 (𝑃 −𝑋 + 𝑥) = 𝑓 ((𝑃 − 𝑥 ′) −
(𝑋 \ {𝑥 ′}) + 𝑥) that 𝑐 ∈ 𝑓 (𝑃 − 𝑥 ′) and hence 𝑐 ∈ 𝑓 (𝑃).

• Otherwise, only non-clone alternatives are lowest-scoring in 𝑃 . Then by Lemma A.1, the
same is true in 𝑓 (𝑃 − 𝑋 + 𝑥). Since 𝑐 ∈ 𝑓 (𝑃 − 𝑋 + 𝑥) and |𝑋 | ⩽ 𝑚 − 1, there must be a
lowest-scoring alternative ℓ ∉ 𝑋 such that 𝑐 ∈ 𝑓 ((𝑃 − 𝑋 + 𝑥) − ℓ) = 𝑓 ((𝑃 − ℓ) − 𝑋 + 𝑥). By
𝐻1 (𝑃 − ℓ, 𝑋 ), it follows that 𝑐 ∈ 𝑓 (𝑃 − ℓ). Because ℓ must also be lowest-scoring in 𝑃 (due
to Lemma A.1), we have 𝑓 (𝑃 − ℓ) ⊆ 𝑓 (𝑃), and hence 𝑐 ∈ 𝑓 (𝑃).

We next prove𝐻2 (𝑃,𝑋 ), using analogous reasoning. Suppose that 𝑓 (𝑃)∩𝑋 ≠ ∅. Let 𝑥 ∈ 𝑓 (𝑃)∩𝑋
be a winning clone alternative. By definition of elimination scoring rules, 𝑥 ∈ 𝑓 (𝑃) means that there
is an alternative ℓ with lowest score in 𝑃 such that 𝑥 ∈ 𝑓 (𝑃 − ℓ). We show that 𝑥 ∈ 𝑓 (𝑃 − 𝑋 + 𝑥).

• Consider first the case that ℓ is not a clone alternative, ℓ ∉ 𝑋 . By Lemma A.1, ℓ is also a
lowest-scoring alternative in 𝑃 − 𝑋 + 𝑥 . Thus by definition of elimination scoring rules,
𝑓 ((𝑃 −𝑋 +𝑥) − ℓ) ⊆ 𝑓 (𝑃 −𝑋 +𝑥), and hence it suffices to show that 𝑥 ∈ 𝑓 ((𝑃 −𝑋 +𝑥) − ℓ) =
𝑓 ((𝑃 − ℓ) − 𝑋 + 𝑥). But this follows from 𝐻2 (𝑃 − ℓ, 𝑋 ) because 𝑥 ∈ 𝑓 (𝑃 − ℓ).

• Consider next the case that ℓ ∈ 𝑋 . Clearly ℓ ≠ 𝑥 since 𝑥 ∈ 𝑓 (𝑃 − ℓ). By 𝐻2 (𝑃 − ℓ, 𝑋 \ {ℓ}),
since 𝑥 ∈ 𝑓 (𝑃 − ℓ), we get that 𝑥 ∈ 𝑓 ((𝑃 − ℓ) − (𝑋 \ {ℓ}) + 𝑥) = 𝑓 (𝑃 − 𝑋 + 𝑥) where the
last equality follows because the two profiles are the same since ℓ ∈ 𝑋 .

Conversely, suppose that 𝑥 ∈ 𝑓 (𝑃 − 𝑋 + 𝑥) for all 𝑥 ∈ 𝑋 . We need to show that 𝑓 (𝑃) ∩ 𝑋 ≠ ∅.

• Suppose that there exists a clone alternative 𝑥 ′ ∈ 𝑋 which is a lowest-scoring alternative in
𝑃 . Noting that |𝑋 | ⩾ 2, choose any other clone 𝑥 ∈ 𝑋 \ {𝑥 ′} and note that 𝑥 ∈ 𝑓 (𝑃 −𝑋 + 𝑥)
by assumption. Since 𝑥 ′ is lowest-scoring in 𝑃 , by definition of elimination scoring rules,
𝑓 (𝑃 − 𝑥 ′) ⊆ 𝑓 (𝑃). By 𝐻2 (𝑃 − 𝑥 ′, 𝑋 \ {𝑥 ′}), it follows from 𝑥 ∈ 𝑓 (𝑃 −𝑋 + 𝑥) = 𝑓 ((𝑃 − 𝑥 ′) −
(𝑋 \ {𝑥 ′}) + 𝑥) that 𝑓 (𝑃 − 𝑥 ′) ∩ (𝑋 \ {𝑥 ′}) ≠ ∅ and hence also 𝑓 (𝑃) ∩ 𝑋 ≠ ∅.

• Otherwise, only non-clone alternatives are lowest-scoring in 𝑃 . Then by Lemma A.1, the
same is true in 𝑓 (𝑃 − 𝑋 + 𝑥). Since 𝑥 ∈ 𝑓 (𝑃 − 𝑋 + 𝑥) and |𝑋 | ⩽ 𝑚 − 1, there must be a
lowest-scoring alternative ℓ ∉ 𝑋 such that 𝑥 ∈ 𝑓 ((𝑃 −𝑋 + 𝑥) − ℓ) = 𝑓 ((𝑃 − ℓ) −𝑋 + 𝑥). By
𝐻2 (𝑃 − ℓ, 𝑋 ), it follows that 𝑓 (𝑃 − ℓ) ∩ 𝑋 ≠ ∅. Because ℓ must also be lowest-scoring in 𝑃

(due to Lemma A.1), we have 𝑓 (𝑃 − ℓ) ⊆ 𝑓 (𝑃), and hence also 𝑓 (𝑃) ∩ 𝑋 ≠ ∅. □
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A.2 Proof of Theorem 3.6
Theorem 3.6. When there are at least𝑚 ⩾ 4 alternatives, Approval-IRV is the only elimination

scoring rule that satisfies independence of clones and respects cohesive majorities.

Proof. Let 𝑓 be an elimination scoring rule satisfying independence of clones and respect for
cohesive majorities. We want to show that for all order types 𝜏 , their scoring vector is 𝑠 (𝜏) =
(1, 0, . . . , 0). We first prove it for linear order types 𝜏 = (1, 1, . . . , 1, 1), then for all other order types.
Because there is only one linear order type of length𝑚, we denote 𝑠 (𝑚) = 𝑠 (𝜏) for |𝜏 | = 𝑚. We
know that 𝑠 (𝑚)1 > 0 otherwise 𝑠 (𝑚) = (0, 0, . . . , 0, 0) and 𝑎 is not the only winner in the profile
with one ranking where 𝑎 is first {𝑎} ≻ . . . , contradicting respect for cohesive majorities. Thus, we
can assume without loss of generality that for all𝑚, 𝑠 (𝑚)1 = 1 (as there is only one linear order
type for each number of candidates). In Lemma A.2, we prove that 𝑠 (𝜏) = (1, 0, . . . , 0) for all linear
orders 𝜏 .

Lemma A.2. Let 𝑓 be an elimination scoring rule satisfying independence of clones and respect for
cohesive majorities. Then any linear order type 𝜏 is associated to the scoring vector 𝑠 (𝜏) = (1, 0, . . . , 0).

Proof. We prove it by induction on the number of candidates𝑚. For𝑚 = 2 it is true because
the only order type 𝜏 = (1, 1) has scoring vector (1, 0). For𝑚 = 3, we will use two order types:
𝜏111 = (1, 1, 1) and 𝜏21 = (2, 1). Denote 𝑥 and 𝑦 such that 𝑠 (𝜏111) = (1, 𝑥, 0) and 𝑠 (𝜏21) = (𝑦, 0) with
𝑥 ∈ [0, 1] and 𝑦 ⩾ 0. We want to prove that 𝑥 = 0.
We will prove (1) 𝑦 ⩽ 1, (2) if 𝑦 < 1 then 𝑥 = 0 and (3) if 𝑦 = 1 then 𝑥 = 0. This will prove that

𝑥 = 0. Note that in this lemma we will not determine the exact value of 𝑦.
Let us prove that 𝑦 ⩽ 1. Assume for contradiction that 𝑦 > 1. Let 𝑞 ∈ N with 𝑞 > 1

𝑦−1 and
consider the profile 𝑃 with 𝑞 + 1 orders {𝑎} ≻ {𝑏} ≻ {𝑐} and 𝑞 orders {𝑏, 𝑐} ≻ {𝑎}. By respect for
cohesive majorities, 𝑎 should be the winner. But the scores are 𝑆 (𝑎) = 𝑞 + 1 and 𝑆 (𝑏) ⩾ 𝑆 (𝑐) = 𝑞𝑦.
Because 𝑞 > 1

𝑦−1 , 𝑎 is eliminated first, a contradiction.
Let us prove that if 𝑦 < 1, then 𝑥 = 0. Assume for contradiction that 𝑦 < 1 and 𝑥 > 0. Let 𝑞 ∈ N

with 𝑞 > 1
𝑥
and 𝑞 > 1

1−𝑦 and consider the profile 𝑃 :

𝑞 : {𝑐} ≻ {𝑏} ≻ {𝑎}
𝑞 : {𝑎, 𝑏} ≻ {𝑐}
1 : {𝑎} ≻ {𝑐} ≻ {𝑏}

In this profile, 𝑎 is ranked top by more than half of the voters, so 𝑓 (𝑃) ⊆ {𝑎, 𝑏} by respect for
cohesive majorities. However, the scores are 𝑆 (𝑎) = 𝑞𝑦 + 1, 𝑆 (𝑏) = 𝑞𝑦 +𝑞𝑥 and 𝑆 (𝑐) = 𝑞 +𝑥 . Because
𝑞 > 1

𝑥
we have 𝑆 (𝑏) > 𝑆 (𝑎) and because 𝑞 > 1

1−𝑦 , 𝑆 (𝑐) > 𝑆 (𝑎). Thus, 𝑎 is eliminated first. The
scores are now 𝑆 (𝑐) = 𝑞 + 1 and 𝑆 (𝑏) = 𝑞, so 𝑐 wins, a contradiction. Thus, if 𝑦 < 1, then 𝑥 = 0.
Let us prove that if 𝑦 = 1, then 𝑥 = 0 again. Assume for contradiction that 𝑦 = 1 but 𝑥 > 0. Let

𝑞 ∈ N with 𝑞 > 1
𝑥
and 𝑞 > 2 and consider the profile 𝑃 :

𝑞 + 1 : {𝑏, 𝑐} ≻ {𝑎}
𝑞 : {𝑎} ≻ {𝑐} ≻ {𝑏}
1 : {𝑎, 𝑏} ≻ {𝑐}
1 : {𝑎} ≻ {𝑏} ≻ {𝑐}

In this profile, 𝑎 is ranked top by more than half of the voters, so 𝑓 (𝑃) ⊆ {𝑎, 𝑏} by respect for
cohesive majorities. However, the scores are 𝑆 (𝑎) = 𝑞+2, 𝑆 (𝑏) = 𝑞+2+𝑥 > 𝑆 (𝑎) and 𝑆 (𝑐) = 𝑞+1+𝑞𝑥 .
Since𝑞 > 1

𝑥
, we have 𝑆 (𝑐) > 𝑆 (𝑎) and 𝑎 is eliminated first. Then the scores are 𝑆 (𝑐) = 𝑞 and 𝑆 (𝑏) = 2,

so 𝑐 wins, which is a contradiction.
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Therefore, we know that 𝑥 = 0 and 𝑠 (𝜏111) = (1, 0, 0). Let us now prove it for 𝑚 = 4 (i.e.
𝜏 = (1, 1, 1, 1)). Assume for contradiction that 𝑠 (4)2 > 0. Let 𝑞 ∈ N with 𝑞 > 1

𝑠 (4)2 and consider the
following profile:

𝑞 + 1 : {𝑏} ≻ {𝑐} ≻ {𝑎} ≻ {𝑎′}
𝑞 : {𝑐} ≻ {𝑎} ≻ {𝑎′} ≻ {𝑏}
𝑞 : {𝑎} ≻ {𝑎′} ≻ {𝑐} ≻ {𝑏}
𝑞 : {𝑎′} ≻ {𝑎} ≻ {𝑐} ≻ {𝑏}

In this profile, the scores are 𝑆 (𝑐) ⩾ 𝑞 + (𝑞 + 1)𝑠 (4)2, 𝑆 (𝑏) = 𝑞 + 1 and 𝑆 (𝑎) ⩾ 𝑆 (𝑎′) ⩾ 𝑞 + 𝑞𝑠 (4)2.
Because 𝑞 > 1

𝑠 (4)2 , we have 𝑆 (𝑐) > 𝑆 (𝑏) and 𝑆 (𝑎′) > 𝑆 (𝑏), so 𝑏 is eliminated first. The scoring
vectors are now (1, 0, 0), so the scores are 𝑆 (𝑐) = 2𝑞 + 1 and 𝑆 (𝑎) = 𝑆 (𝑎′) = 𝑞 so one of 𝑎 or 𝑎′ is
eliminated, and 𝑐 wins the majority vote in the final round. Note that in this profile 𝑎 and 𝑎′ are
clones, so 𝑐 should also win in the profile in which we remove the clone 𝑎′ of 𝑎. However, in this
profile, the scores are 𝑆 (𝑏) = 𝑞 + 1, 𝑆 (𝑐) = 𝑞 and 𝑆 (𝑎) = 2𝑞, so 𝑐 is eliminated first, a contradiction.
This proves that 𝑠 (4)2 = 0 and thus 𝑠 (4) = (1, 0, 0, 0).
We know prove by induction that for all𝑚, 𝑠 (𝑚) = (1, 0, . . . , 0). Assume it is true for𝑚 ⩾ 4, let

us prove it for𝑚 + 1. Assume for contradiction that 𝑠 (𝑚 + 1)2 > 0. Let 𝑞 ∈ N with 𝑞 > 1
𝑠 (𝑚+1)2 and

consider the profile 𝑃 on 𝐶 = {𝑎, 𝑎′, 𝑏, 𝑐1, . . . , 𝑐𝑚−2}:

• For each 𝑖 ∈ [1,𝑚 − 2], 𝑞 linear orders {𝑐𝑖 } ≻ {𝑏} ≻ {𝑎} ≻ {𝑎′} ≻ {𝑐𝑖+1} ≻ · · · ≻ {𝑐𝑖+𝑚−3}
where the subscripts of 𝑐𝑖 have to be taken modulo𝑚 − 2 (for instance, the linear order
starting with 𝑐2 ends with 𝑐1).
• 𝑞 − 1 linear orders {𝑏} ≻ {𝑎} ≻ {𝑎′} ≻ {𝑐1} ≻ · · · ≻ {𝑐𝑚−2}.
• 𝑞 linear orders {𝑎} ≻ {𝑎′} ≻ {𝑏} ≻ {𝑐1} ≻ · · · ≻ {𝑐𝑚−2}.
• 𝑞 linear orders {𝑎′} ≻ {𝑎} ≻ {𝑏} ≻ {𝑐1} ≻ · · · ≻ {𝑐𝑚−2}.

Note that in this profile, each 𝑐𝑖 is ranked last in at least 𝑞 orders. The scores are 𝑆 (𝑎) ⩾ 𝑆 (𝑎′) =
𝑞 + 𝑞𝑠 (𝑚 + 1)2 + 𝑞𝑠 (𝑚 + 1)3 + 𝑞(𝑚 − 2)𝑠 (𝑚 + 1)4, 𝑆 (𝑏) = (𝑞 − 1) + 𝑞(𝑚 − 2)𝑠 (𝑚 + 1)2 + 2𝑞𝑠 (𝑚 + 1)3
and 𝑆 (𝑐𝑖 ) ⩽ 𝑞 + (3𝑞 − 1)𝑠 (𝑚 + 1)4 + 𝑞(𝑚 − 4)𝑠 (𝑚 + 1)5.
We know that 𝑠 (𝑚 + 1)2 ⩾ 𝑠 (𝑚 + 1)3 ⩾ 𝑠 (𝑚 + 1)4 ⩾ 𝑠 (𝑚 + 1)5, so we can make the following

observation for all candidates 𝑐𝑖 :

𝑆 (𝑏) ⩾ (𝑞 − 1) + 𝑞(𝑚 − 2)𝑠 (𝑚 + 1)2 + 2𝑞𝑠 (𝑚 + 1)3
= 𝑞 − 1 + 𝑞𝑠 (𝑚 + 1)2 + 𝑞(𝑚 − 3)𝑠 (𝑚 + 1)2 + 2𝑞𝑠 (𝑚 + 1)3
⩾ 𝑞 − 1 + 𝑞𝑠 (𝑚 + 1)2 + 𝑞(𝑚 − 3)𝑠 (𝑚 + 1)3 + 2𝑞𝑠 (𝑚 + 1)3
= 𝑞 − 1 + 𝑞𝑠 (𝑚 + 1)2 + 𝑞(𝑚 − 1)𝑠 (𝑚 + 1)3
= 𝑞 − 1 + 𝑞𝑠 (𝑚 + 1)2 + 𝑞(𝑚 − 4)𝑠 (𝑚 + 1)3 + 3𝑞𝑠 (𝑚 + 1)3
⩾ 𝑞 − 1 + 𝑞𝑠 (𝑚 + 1)2 + 𝑞(𝑚 − 4)𝑠 (𝑚 + 1)5 + 3𝑞𝑠 (𝑚 + 1)4
⩾ 𝑞 − 1 + 𝑞𝑠 (𝑚 + 1)2 + 𝑞(𝑚 − 4)𝑠 (𝑚 + 1)5 + (3𝑞 − 1)𝑠 (𝑚 + 1)4
> 𝑞 + 𝑞(𝑚 − 4)𝑠 (𝑚 + 1)5 + (3𝑞 − 1)𝑠 (𝑚 + 1)4 (since 𝑞 > 1

𝑠 (𝑚+1)2 )
⩾ 𝑆 (𝑐𝑖 ).

Moreover, we have:
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𝑆 (𝑎) ⩾ 𝑆 (𝑎′) ⩾ 𝑞 + 𝑞(𝑚 − 2)𝑠 (𝑚 + 1)4 + (𝑞 − 1)𝑠 (𝑚 + 1)3 + 𝑞𝑠 (𝑚 + 1)2
= 𝑞 + 𝑞(𝑚 − 4)𝑠 (𝑚 + 1)4 + 2𝑞𝑠 (𝑚 + 1)4 + (𝑞 − 1)𝑠 (𝑚 + 1)3 + 𝑞𝑠 (𝑚 + 1)2
⩾ 𝑞 + 𝑞(𝑚 − 4)𝑠 (𝑚 + 1)4 + (3𝑞 − 1)𝑠 (𝑚 + 1)4 + 𝑞𝑠 (𝑚 + 1)2
> 𝑞 + 𝑞(𝑚 − 4)𝑠 (𝑚 + 1)5 + (3𝑞 − 1)𝑠 (𝑚 + 1)4 (since 𝑠 (𝑚 + 1)2 > 0)
⩾ 𝑆 (𝑐𝑖 ).

Therefore, one of the 𝑐𝑖 is eliminated first. By induction hypothesis, all scoring vectors are now
(1, 0, . . . , 0). The scores are now 𝑆 (𝑎) = 𝑆 (𝑎′) = 𝑞, 𝑆 (𝑏) = 2𝑞 − 1 and 𝑆 (𝑐𝑖 ) = 𝑞 for all 𝑐𝑖 that are not
eliminated. Moreover, the score of any candidate other than 𝑏 is upper bounded by 𝑞 as long as 𝑏 is
not eliminated, except for 𝑎 (or 𝑎′), which obtains a score of 2𝑞 once its clone 𝑎′ (or 𝑎) is eliminated.
Therefore, the 𝑐𝑖 are successively eliminated until 𝑎 (or 𝑎′) and 𝑏 remain. The scores are 𝑆 (𝑎) = 2𝑞
and 𝑆 (𝑏) = 𝑞 − 1 + 𝑞(𝑚 − 2). Because𝑚 ⩾ 4, 𝑆 (𝑏) > 𝑆 (𝑎) and 𝑏 wins.

Note that in this profile, 𝑎 and 𝑎′ are clones. Therefore, by independence of clones, 𝑏 should also
win in the profile in which we remove the clone 𝑎′ of 𝑎. However, in this profile, all scoring vectors
are (1, 0, . . . , 0) by our induction hypothesis. Thus, the scores are 𝑆 (𝑎) = 2𝑞, 𝑆 (𝑐𝑖 ) = 𝑞 for all 𝑐𝑖 and
𝑆 (𝑏) = 𝑞 − 1. Thus, 𝑏 is eliminated first, a contradiction.

This proves that 𝑠 (𝑚 + 1)2 = 0. Because we know that 𝑠 (𝑚 + 1)𝑖 ⩽ 𝑠 (𝑚 + 1)2 for all 𝑖 ⩾ 3, we
have 𝑠 (𝑚 + 1) = (1, 0, . . . , 0) and the induction hypothesis concludes the proof. □

We now prove the result for all other order types. For this, we proceed in several steps. We first
show that some specific order types with length |𝜏 | ⩽ 3 or defined for 𝑚 ⩽ 5 candidates have
approval scores as their scoring vector. Then, we proceed by induction to prove the result for all
other order types.

In this proof, if a ballot is indifferent between all candidates, i.e., its order type is of length |𝜏 | = 1,
we say that 𝑠 (𝜏) = (0) and no candidates get points. Moreover, in every profile, when we use
some 𝑞 ∈ N, we assume that 𝑞 is large enough (e.g., 𝑞 > 100), such that what matters most is the
coefficient of 𝑞 (for instance, we will consider that 2𝑞 > 𝑞 + 5).
Step 1. We first focus on order types 𝜏21 and 𝜏31 and show that (1) 𝑠 (𝜏21)1 ⩽ 1, (2) 𝑠 (𝜏21)1 ∈
[0, 12 ] ∪ {1}, (3) 𝑠 (𝜏21)1 = 𝑠 (𝜏31)1 and (4) 𝑠 (𝜏21)1 ⩾ 5

9 . Combining these gives 𝑠 (𝜏21) = 𝑠 (𝜏31) = (1, 0).
Step 1.1.We prove that 𝑠 (𝜏21)1 ⩽ 1 using respect for cohesive majorities. Assume for a contradic-

tion that 𝑠 (𝜏21)1 > 1. Let 𝑞 ∈ N be such that 𝑞 > 1
𝑠 (𝜏21 )1−1 and consider the profile 𝑃 with 𝑞 orders

{𝑐, 𝑏} ≻ {𝑎} and 𝑞 + 1 linear orders {𝑎} ≻ {𝑐} ≻ {𝑏}. Here, 𝑎 is in the top indifference class of more
than half voters, but the scores are 𝑆 (𝑎) = 𝑞 + 1 and 𝑆 (𝑐) = 𝑆 (𝑏) = 𝑞𝑠 (𝜏21)1. Since 𝑞 > 1

𝑠 (𝜏21 )1−1 ,
𝑆 (𝑐) = 𝑆 (𝑏) > 𝑆 (𝑎) and 𝑎 is eliminated first, which contradicts respect for cohesive majorities.

Step 1.2. We prove that 𝑠 (𝜏21)1 ∈ [0, 12 ] ∪ {1} using respect for cohesive majorities. Assume
for a contradiction that 1

2 < 𝑠 (𝜏21)1 < 1 and let 𝑞 ∈ N be such that 𝑞 > max( 1
1−𝑠 (𝜏21 )1 ,

1
2𝑠 (𝜏21 )1−1 ).

Consider the following profile 𝑃 :

𝑞 + 1 : {𝑎} ≻ {𝑐} ≻ {𝑏}
3𝑞 : {𝑎, 𝑏} ≻ {𝑐}
2𝑞 : {𝑏, 𝑐} ≻ {𝑎}
2𝑞 : {𝑐} ≻ {𝑏} ≻ {𝑎}

In this profile, 𝑎 is in the top indifference class of more than half of the voters. Respect for cohesive
majorities imposes that 𝑓 (𝑃) ⊆ {𝑎, 𝑏}. The scores are 𝑆 (𝑎) = 𝑞 + 1 + 3𝑞𝑠 (𝜏21)1, 𝑆 (𝑏) = 5𝑞𝑠 (𝜏21)1 and
𝑆 (𝑐) = 2𝑞 + 2𝑞𝑠 (𝜏21)1. Since 𝑞 > 1

1−𝑠 (𝜏21 )1 , we have 𝑆 (𝑎) < 𝑆 (𝑐) and since 𝑞 > 1
2𝑠 (𝜏21 )1−1 we have
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𝑆 (𝑎) < 𝑆 (𝑏). Thus, 𝑎 is eliminated first and 𝑐 wins the majority vote against 𝑏, which contradicts
respect for cohesive majorities.
Step 1.3. We prove that 𝑠 (𝜏21)1 = 𝑠 (𝜏31)1 using independence of clones. First assume that

𝑠 (𝜏21)1 < 𝑠 (𝜏31)1. Let 𝑞, 𝑞′ ∈ N such that 𝑞𝑠 (𝜏21)1 < 𝑞′ < 𝑞𝑠 (𝜏31)1. Consider the following profile 𝑃 :

𝑞 : {𝑐, 𝑐′, 𝑎} ≻ {𝑏}
2𝑞′ : {𝑏} ≻ {𝑎} ≻ {𝑐′} ≻ {𝑐}

𝑞′ + 2 : {𝑐} ≻ {𝑐′} ≻ {𝑏} ≻ {𝑎}
𝑞′ + 1 : {𝑐′} ≻ {𝑐} ≻ {𝑏} ≻ {𝑎}

𝑞′ : {𝑎} ≻ {𝑏} ≻ {𝑐} ≻ {𝑐′}

In this profile, the scores are 𝑆 (𝑐) > 𝑆 (𝑐′) > 𝑆 (𝑎) = 𝑞′ + 𝑞𝑠 (𝜏31)1 > 2𝑞′ and 𝑆 (𝑏) = 2𝑞′. Thus, 𝑏
is eliminated first. The new scores are 𝑆 (𝑐) > 𝑆 (𝑐′) = 𝑞′ + 1 and 𝑆 (𝑎) = 3𝑞′. Thus, 𝑐′ and 𝑐 are
eliminated, and 𝑎 wins. Now, observe that 𝑐 and 𝑐′ are clones in 𝑃 . Therefore, independence of
clones imposes that 𝑎 should also be winning in the profile 𝑃 ′ in which we remove 𝑐′. In 𝑃 ′, the
scores are 𝑆 (𝑐) > 𝑆 (𝑎) = 𝑞𝑠 (𝜏21)1 + 𝑞′ < 2𝑞′ and 𝑆 (𝑏) = 2𝑞′. Therefore, 𝑎 is eliminated first, which
contradicts independence of clones.
We now assume that 𝑠 (𝜏21)1 > 𝑠 (𝜏31)1. Let 𝑞, 𝑞′ ∈ N such that 𝑞𝑠 (𝜏21)1 > 𝑞′ > 𝑞𝑠 (𝜏31)1. Using the

same profiles 𝑃 and 𝑃 ′ as above, we have that 𝑎 is eliminated first in 𝑃 , but in 𝑃 ′, 𝑏 is eliminated
first, and 𝑎 is the winner. This contradicts again independence of clones. We conclude that 𝑠 (𝜏21)1 =
𝑠 (𝜏31)1.

Step 1.4.We prove that 𝑠 (𝜏21)1 ⩾ 5
9 . Assume for a contradiction that 𝑠 (𝜏21)1 < 5

9 and consider
the following profile 𝑃 .

4 : {𝑎, 𝑏} ≻ {𝑑} ≻ {𝑐}
5 : {𝑎, 𝑐} ≻ {𝑑} ≻ {𝑏}
13 : {𝑎, 𝑏, 𝑐} ≻ {𝑑}
5 : {𝑏, 𝑑} ≻ {𝑐} ≻ {𝑎}
4 : {𝑐, 𝑑} ≻ {𝑏} ≻ {𝑎}
1 : {𝑏} ≻ {𝑑} ≻ {𝑐} ≻ {𝑎}
1 : {𝑐} ≻ {𝑑} ≻ {𝑏} ≻ {𝑎}
10 : {𝑑} ≻ {𝑐} ≻ {𝑏} ≻ {𝑎}

In this profile, 𝑎 is on the top indifference class of more than half of the voters, therefore by
respect for cohesive majorities we have 𝑓 (𝑃) ⊆ {𝑎, 𝑏, 𝑐}. The scores are 𝑆 (𝑎) = 9𝑠 (𝜏211)1 + 13𝑠 (𝜏31)1,
𝑆 (𝑐) ⩾ 𝑆 (𝑏) = 9𝑠 (𝜏211)1 + 13𝑠 (𝜏31)1 + 1 > 𝑆 (𝑎) and 𝑆 (𝑑) ⩾ 10 + 9𝑠 (𝜏211)1. Note that we are
only lower bounding as we do not know if (𝜏211)2 = 0. Since 𝑠 (𝜏31)1 = 𝑠 (𝜏21)1 < 5

9 < 10
13 , we

have that 𝑆 (𝑎) < 𝑆 (𝑑). Therefore, 𝑎 is eliminated first. The new scores are 𝑆 (𝑏) = 18𝑠 (𝜏21)1 + 5,
𝑆 (𝑐) = 17𝑠 (𝜏21)1 + 6 and 𝑆 (𝑑) = 10 + 9𝑠 (𝜏21)1, since 𝑠 (𝜏21)1 < 5

9 , we have 𝑆 (𝑏) < 𝑆 (𝑑), and
𝑆 (𝑏) < 𝑆 (𝑐). So 𝑏 is eliminated. Finally, 𝑑 wins the majority vote against 𝑐 . This contradicts respect
for cohesive majorities.
Thus, since 𝑠 (𝜏21)1 ∈ [0, 12 ] ∪ {1} and 𝑠 (𝜏21)1 ⩾ 5

9 > 1
2 , we can conclude that 𝑠 (𝜏21) = (1, 0).

Moreover, 𝑠 (𝜏31) = (1, 0).
Step 2. We now prove that 𝑠 (𝜏211)1 = 1.
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Step 2.1. Let us prove that 𝑠 (𝜏211)1 ⩽ 1. Assume that 𝑠 (𝜏211)1 > 1 and take 𝑞 ∈ N such that
𝑞 > 1

𝑠 (𝜏211 )1−1 . Consider the following profile 𝑃 :

𝑞 + 4 : {𝑎} ≻ {𝑑} ≻ {𝑐} ≻ {𝑏}
3𝑞 : {𝑎, 𝑏, 𝑐} ≻ {𝑑}

2𝑞 + 1 : {𝑏, 𝑑} ≻ {𝑐} ≻ {𝑎}
2𝑞 − 1 : {𝑐, 𝑑} ≻ {𝑏} ≻ {𝑎}

In this profile, 𝑎 is in the top indifference class of more than half of the votes, so by respect for
cohesive majorities we should have 𝑓 (𝑃) ⊆ {𝑎, 𝑏, 𝑐}. The scores are 𝑆 (𝑎) = 4𝑞 + 4, 𝑆 (𝑏) > 𝑆 (𝑐) ⩾
3𝑞 + (2𝑞 − 1)𝑠 (𝜏211)1 > 5𝑞 − 1 > 𝑆 (𝑎) and 𝑆 (𝑑) = 4𝑞𝑠 (𝜏211)1. Note that we are only lower bounding
𝑆 (𝑐) and 𝑆 (𝑏) as we do not know if 𝑠 (𝜏211)2 = 0. Since 𝑞 > 1

𝑠 (𝜏211 )1−1 , 𝑆 (𝑑) > 𝑆 (𝑎). Thus, 𝑎 is
eliminated first. The new scores are 𝑆 (𝑏) > 𝑆 (𝑐) = 5𝑞 − 1 and 𝑆 (𝑑) = 5𝑞 + 4. Thus, 𝑐 is eliminated
next, and 𝑑 wins the majority vote against 𝑏, which contradicts respect for cohesive majorities.
Step 2.2. Let us prove that 𝑠 (𝜏211)1 ⩾ 1 with independence of clones. Assume that 𝑠 (𝜏211)1 < 1.

Take 𝑞 ∈ N such that 𝑞 > 1
1−𝑠 (𝜏211 )1 and consider the profile 𝑃 :

𝑞 : {𝑎, 𝑏} ≻ {𝑐} ≻ {𝑐′}
3 : {𝑎} ≻ {𝑐} ≻ {𝑐′} ≻ {𝑏}
4 : {𝑏} ≻ {𝑐} ≻ {𝑐′} ≻ {𝑎}

𝑞 + 2 : {𝑐, 𝑐′, 𝑎} ≻ {𝑏}
𝑞 + 2 : {𝑐, 𝑐′, 𝑏} ≻ {𝑎}

In this profile, 𝑆 (𝑏) > 𝑆 (𝑎) = 𝑞𝑠 (𝜏211)1 + 𝑞 + 5 and 𝑆 (𝑐) ⩾ 𝑆 (𝑐′) ⩾ 2𝑞 + 4. Since 𝑞 > 1
1−𝑠 (𝜏211 )1 , we

have 𝑆 (𝑐) > 𝑆 (𝑎). Thus, 𝑎 is eliminated first. The new scores are 𝑆 (𝑏) = 𝑞 + 4, 𝑆 (𝑐) = 𝑞 + 5 and
𝑆 (𝑐′) = 𝑞 + 2 so 𝑐′ is eliminated next, then 𝑐 wins the majority vote against 𝑏. Now observe that 𝑐
and 𝑐′ are clones in 𝑃 , so by independence of clones, 𝑐 should also win in the profile 𝑃 ′ without 𝑐′.
However, in 𝑃 ′, the scores are 𝑆 (𝑏) > 𝑆 (𝑎) = 2𝑞 + 5 and 𝑆 (𝑐) = 2𝑞 + 4, so 𝑐 is eliminated first. This
contradicts independence of clones, and proves that 𝑠 (𝜏211)1 = 1.

Step 3. We now prove that 𝑠 (𝜏12) = 𝑠 (𝜏22) = 𝑠 (𝜏13) = (1, 0).
Step 3.1.We first show that 𝑠 (𝜏12)1 = 1. First, we show that 𝑠 (𝜏12)1 ⩾ 1 using respect for cohesive

majorities. Take 𝑞 ∈ N such that 𝑞 > 1
1−𝑠 (𝜏12 )1 and consider the profile 𝑃 with 𝑞 orders {𝑎} ≻ {𝑏, 𝑐}

and 𝑞 − 1 orders {𝑏, 𝑐} ≻ {𝑎}. In this profile, 𝑎 is ranked first in more than half of the votes, but the
scores are 𝑆 (𝑎) = 𝑞𝑠 (𝜏12)1 and 𝑆 (𝑏) = 𝑆 (𝑐) = 𝑞. By hypothesis on 𝑞, 𝑆 (𝑏) = 𝑆 (𝑐) > 𝑆 (𝑎) and 𝑎 is
eliminated first, a contradiction.
Assume now that 𝑠 (𝜏12)1 > 1. Take 𝑞 ∈ N such that 𝑞 > 1

𝑠 (𝜏12 )1−1 and consider the following
profile 𝑃 :

𝑞 + 2 : {𝑎, 𝑏} ≻ {𝑐}
𝑞 : {𝑐} ≻ {𝑎, 𝑏}
4 : {𝑏, 𝑐} ≻ {𝑎}
3 : {𝑎} ≻ {𝑐} ≻ {𝑏}

In this profile, 𝑎 is in the top indifference class of more than half of the votes, thus by respect for
cohesive majorities 𝑓 (𝑃) ⊆ {𝑎, 𝑏}. The scores are 𝑆 (𝑎) = 𝑞 + 5, 𝑆 (𝑏) = 𝑞 + 6 and 𝑆 (𝑐) = 4 + 𝑞𝑠 (𝜏12)1.
Since 𝑞 > 1

𝑠 (𝜏12 )1−1 , 𝑆 (𝑐) > 𝑆 (𝑎), thus 𝑎 is eliminated first, and 𝑐 wins the majority vote against 𝑏.
This contradicts respect for cohesive majorities. Therefore, we necessarily have 𝑠 (𝜏12) = (1, 0).
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Step 3.2. We now show that 𝑠 (𝜏22)1 = 1. Assume that 𝑠 (𝜏22)1 < 1. Take 𝑞 ∈ N such that
𝑞 > 1

1−𝑠 (𝜏22 )1 and consider the following profile 𝑃 :

𝑞 + 2 : {𝑏,𝑏′} ≻ {𝑐} ≻ {𝑎}
𝑞 : {𝑎, 𝑐} ≻ {𝑏,𝑏′}
3 : {𝑎} ≻ {𝑏} ≻ {𝑏′} ≻ {𝑐}
4 : {𝑐} ≻ {𝑏} ≻ {𝑏′} ≻ {𝑎}

In this profile, 𝑆 (𝑐) > 𝑆 (𝑎) = 𝑞𝑠 (𝜏22)1 + 3 and 𝑆 (𝑏) = 𝑆 (𝑏′) = 𝑞 + 2. Since 𝑞 > 1
1−𝑠 (𝜏22 )1 , 𝑆 (𝑏) > 𝑆 (𝑎)

and 𝑎 is eliminated first, then 𝑏′ is eliminated, and 𝑏 wins the majority vote against 𝑐 . Since 𝑏 and 𝑏′
are clones, this means that in the profile 𝑃 ′ in which we remove 𝑏′, 𝑏 should still win. If we remove
𝑏′, the scores are 𝑆 (𝑐) > 𝑆 (𝑎) = 𝑞 + 3 and 𝑆 (𝑏) = 𝑞 + 2, so 𝑏 is eliminated first. This contradicts
independence of clones.
Assume now that 𝑠 (𝜏22)1 > 1. Take 𝑞 ∈ N such that 𝑞 > 1

𝑠 (𝜏22 )1−1 and consider the following
profile 𝑃 :

𝑞 : {𝑏, 𝑏′} ≻ {𝑎, 𝑐}
𝑞 − 2 : {𝑎, 𝑐} ≻ {𝑏} ≻ {𝑏′}

3 : {𝑎} ≻ {𝑏} ≻ {𝑏′} ≻ {𝑐}
4 : {𝑐} ≻ {𝑏} ≻ {𝑏′} ≻ {𝑎}

In this profile, 𝑆 (𝑐) > 𝑆 (𝑎) = 𝑞 + 1 and 𝑆 (𝑏) = 𝑆 (𝑏′) ⩾ 𝑞𝑠 (𝜏22)1. Since 𝑞 > 1
𝑠 (𝜏22 )1−1 , 𝑆 (𝑏) > 𝑆 (𝑎)

and 𝑎 is eliminated, then 𝑏′ is eliminated and 𝑏 wins the majority vote against 𝑐 . Since 𝑏 and 𝑏′ are
clones, by independence of clones, 𝑏 should also win in the profile 𝑃 ′ in which we remove 𝑏′. If we
remove 𝑏′, the scores are 𝑆 (𝑐) > 𝑆 (𝑎) = 𝑞 + 1 and 𝑆 (𝑏) = 𝑞, so 𝑏 is eliminated first. This contradicts
independence of clones. Thus, we necessarily have 𝑠 (𝜏22) = (1, 0).
Step 3.3.We prove that 𝑠 (𝜏13) = (1, 0). Assume first that 𝑠 (𝜏13)1 < 1. Let 𝑞 > 1

1−𝑠 (𝜏13 )1 and 𝑃 be
the profile with 𝑞 orders {𝑎} ≻ {𝑏, 𝑐, 𝑑} and 𝑞 − 1 orders {𝑏, 𝑐, 𝑑} ≻ {𝑎}. By respect for cohesive
majorities, 𝑎 should be the winner, but in this case 𝑎 is eliminated first (as 𝑠 (𝜏31) = (1, 0)). This
proves that 𝑠 (𝜏13)1 ⩾ 1. Now assume that 𝑠 (𝜏13)1 > 1. Let 𝑞 ∈ N be such that 𝑞 > 1

𝑠 (𝜏13 )1−1 and
consider the following profile 𝑃 :

4 : {𝑎} ≻ {𝑑} ≻ {𝑏} ≻ {𝑐}
1 : {𝑎, 𝑏} ≻ {𝑐, 𝑑}

𝑞 + 2 : {𝑎, 𝑏, 𝑐} ≻ {𝑑}
6 : {𝑏, 𝑐, 𝑑} ≻ {𝑎}
𝑞 : {𝑑} ≻ {𝑏, 𝑐, 𝑑}

In this profile, 𝑎 is in the top indifference class of more than half of the votes, so respect for cohesive
majorities implies that 𝑓 (𝑃) ⊆ {𝑎, 𝑏, 𝑐}. The scores are 𝑆 (𝑎) = 𝑞 + 7, 𝑆 (𝑏) = 𝑞 + 9, 𝑆 (𝑐) = 𝑞 + 8 and
𝑆 (𝑑) = 𝑞𝑠 (𝜏13)1 + 6. Because of hypothesis on 𝑞, 𝑆 (𝑑) > 𝑆 (𝑎) so 𝑎 is eliminated first. The scores
are now 𝑆 (𝑑) = 𝑞 + 4, 𝑆 (𝑏) = 𝑞 + 3 and 𝑆 (𝑐) = 𝑞 + 2. 𝑐 is eliminated and 𝑑 wins the majority vote
against 𝑏. This contradicts respect for cohesive majorities. Therefore, 𝑠 (𝜏13) = (1, 0).
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Step 4.We show that 𝑠 (𝜏211)2 = 0. Assume for a contradiction that 𝑠 (𝜏211)2 > 0. Take 𝑞 ∈ N such
that 𝑞 > 1

𝑠 (𝜏211 )2 and consider the profile 𝑃 :

𝑞 : {𝑎, 𝑏} ≻ {𝑐} ≻ {𝑑}
𝑞 : {𝑎, 𝑏} ≻ {𝑑} ≻ {𝑐}
4 : {𝑎} ≻ {𝑐} ≻ {𝑑} ≻ {𝑏}

2𝑞 − 2 : {𝑐, 𝑑} ≻ {𝑎, 𝑏}
5 : {𝑏, 𝑐, 𝑑} ≻ {𝑎}

In this profile, 𝑎 is in the top indifference class of more than half of the vote, so by respect for
cohesive majorities we should have 𝑓 (𝑃) ⊆ {𝑎, 𝑏}. The scores are 𝑆 (𝑎) = 2𝑞 + 4, 𝑆 (𝑏) = 2𝑞 + 5,
𝑆 (𝑐) = 𝑆 (𝑑) = 2𝑞 + 3 + 𝑞𝑠 (𝜏211)2. Since 𝑞 > 1

𝑠 (𝜏211 )2 , 𝑆 (𝑑) > 𝑆 (𝑎). Thus 𝑎 is eliminated first. The new
scores are 𝑆 (𝑏) = 2𝑞, 𝑆 (𝑐) = 2𝑞+2 and 𝑆 (𝑑) = 2𝑞−2 so 𝑑 is eliminated next, and 𝑐 wins the majority
vote against 𝑏. This contradicts respect for cohesive majorities. We conclude that 𝑠 (𝜏211)2 = 0. By
combining this with Step 2, we obtain that 𝑠 (𝜏211) = (1, 0, 0).

Step 5. From the previous four steps, we obtained that 𝜏21, 𝜏31, 𝜏12, 𝜏22 and 𝜏211 are associated to
approval score vectors. We continue to focus on specific order types before the induction step. In
this step, we prove the result for 𝜏112, 𝜏212 and 𝜏121.
Step 5.1. We show that 𝑠 (𝜏112) = (1, 0, 0). We first prove that 𝑠 (𝜏112)1 ⩾ 1. For this, assume by

contradiction that 𝑠 (𝜏112)1 < 1. Take 𝑞 ∈ N such that 𝑞 > 1
1−𝑠 (𝜏112 )1 and consider the profile 𝑃 with

𝑞 orders {𝑎} ≻ {𝑏} ≻ {𝑐, 𝑑} and 𝑞 − 1 orders {𝑏, 𝑐, 𝑑} ≻ {𝑎}. Because of hypothesis on 𝑞, we have
𝑆 (𝑏) ⩾ 𝑆 (𝑐) = 𝑆 (𝑑) > 𝑆 (𝑎), therefore 𝑎 is eliminated first. However, 𝑎 is in the top indifference
class of more than half of the voters, so this contradicts respect for cohesive majorities.
We now prove that 𝑠 (𝜏112)1 ⩽ 1. For this, assume by contradiction that 𝑠 (𝜏112)1 > 1. Take 𝑞 ∈ N

such that 𝑞 > 1
𝑠 (𝜏112 )−1 and consider the profile 𝑃 :

4 : {𝑎} ≻ {𝑑} ≻ {𝑏} ≻ {𝑐}
1 : {𝑎, 𝑏} ≻ {𝑐} ≻ {𝑑}

𝑞 + 2 : {𝑎, 𝑏, 𝑐} ≻ {𝑑}
6 : {𝑏, 𝑐, 𝑑} ≻ {𝑎}
𝑞 : {𝑑} ≻ {𝑐} ≻ {𝑎, 𝑏}

Then, we can use exactly the same reasoning as in Step 3.3 but with 𝜏112 instead of 𝜏13 to obtain a
contradiction.
Finally, we prove that 𝑠 (𝜏112)2 = 0. Assume that 𝑠 (𝜏112)2 > 0. Take 𝑞 ∈ N such that 𝑞 > 1

𝑠 (𝜏112 )2
and consider the profile 𝑃 :

𝑞 : {𝑎} ≻ {𝑏} ≻ {𝑐, 𝑑}
𝑞 : {𝑎} ≻ {𝑐} ≻ {𝑏, 𝑑}
𝑞 : {𝑎} ≻ {𝑑} ≻ {𝑐, 𝑏}

3𝑞 − 1 : {𝑏, 𝑐, 𝑑} ≻ {𝑎}

In this profile 𝑎 is in the top indifference class of more than half of the vote, thus it should win
the election by respect for cohesive majorities. The scores are 𝑆 (𝑎) = 3𝑞 and 𝑆 (𝑏) = 𝑆 (𝑐) = 𝑆 (𝑑) =
3𝑞−1+𝑞𝑠 (𝜏112)2. By our hypothesis on 𝑞, 𝑎 is eliminated first, which contradicts respect for cohesive
majorities. We conclude that 𝑠 (𝜏112) = (1, 0, 0).

Step 5.2.We now show that 𝑠 (𝜏212) = (1, 0, 0).
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We first prove that 𝑠 (𝜏212)1 ⩾ 1. Assume that 𝑠 (𝜏212)1 < 1. Take 𝑞 ∈ N such that 𝑞 > 1
1−𝑠 (𝜏212 )1

and consider the profile 𝑃 :

𝑞 : {𝑎, 𝑏} ≻ {𝑑} ≻ {𝑐, 𝑐′}
𝑞 + 3 : {𝑑, 𝑐, 𝑐′} ≻ {𝑎, 𝑏}

4 : {𝑎} ≻ {𝑐} ≻ {𝑐′} ≻ {𝑏} ≻ {𝑑}
5 : {𝑏} ≻ {𝑐} ≻ {𝑐′} ≻ {𝑎} ≻ {𝑑}

In this profile, the scores are 𝑆 (𝑏) > 𝑆 (𝑎) = 𝑞𝑠 (𝜏212)1 + 4, 𝑆 (𝑑) ⩾ 𝑆 (𝑐) = 𝑆 (𝑐′) = 𝑞 + 3. Since
𝑞 > 1

1−𝑠 (𝜏212 )1 , 𝑎 is eliminated first, then 𝑐′ and 𝑑 are eliminated, and 𝑐 wins the majority vote against
𝑏. Note that 𝑐 and 𝑐′ are clones in this profile, so 𝑐 should also win in the profile 𝑃 ′ in which we
remove 𝑐′. In 𝑃 ′, we have 𝑆 (𝑏) > 𝑆 (𝑎) = 𝑞 + 4 and 𝑆 (𝑐) = 𝑆 (𝑑) = 𝑞 + 3, so 𝑐 and 𝑑 are eliminated
first. This contradicts independence of clones. Therefore, 𝑠 (𝜏212)1 ⩾ 1.
We now prove that 𝑠 (𝜏212)1 ⩽ 1. Assume that 𝑠 (𝜏212)1 > 1. Take 𝑞 ∈ N such that 𝑞 > 1

𝑠 (𝜏212 )1−1
and consider the profile 𝑃 :

𝑞 : {𝑐, 𝑐′} ≻ {𝑑} ≻ {𝑎, 𝑏}
𝑞 + 2 : {𝑑} ≻ {𝑐} ≻ {𝑐′} ≻ {𝑎} ≻ {𝑏}
𝑞 + 1 : {𝑎} ≻ {𝑐} ≻ {𝑐′} ≻ {𝑏} ≻ {𝑑}
𝑞 + 2 : {𝑏} ≻ {𝑐} ≻ {𝑐′} ≻ {𝑎} ≻ {𝑑}

In this profile, the scores are 𝑆 (𝑑) ⩾ 𝑆 (𝑏) > 𝑆 (𝑎) = 𝑞 + 1 and 𝑆 (𝑐) = 𝑆 (𝑐′) = 𝑞𝑠 (𝜏212)1. Because
of the hypothesis on 𝑞, 𝑆 (𝑐) > 𝑆 (𝑎), so 𝑎 is eliminated first. Then, 𝑐′, 𝑏 and 𝑑 are eliminated and
𝑐 is the winner. By independence of clones, 𝑐 should also be the winner if we remove its clone
𝑐′. However, in this case, because 𝑠 (𝜏112) = (1, 0, 0), 𝑐 is eliminated first with score 𝑆 (𝑐) = 𝑞. This
contradicts independence of clones. Therefore, 𝑠 (𝜏212)1 = 1.
We finally prove that 𝑠 (𝜏212)2 = 0. Assume that 𝑠 (𝜏212)2 > 0. Take 𝑞 ∈ N such that 𝑞 > 1

𝑠 (𝜏212 )2
and consider the profile 𝑃 :

𝑞 : {𝑐, 𝑐′} ≻ {𝑑} ≻ {𝑎, 𝑏}
𝑞 − 2 : {𝑑} ≻ {𝑎} ≻ {𝑐} ≻ {𝑐′} ≻ {𝑏}
𝑞 − 1 : {𝑎} ≻ {𝑐} ≻ {𝑐′} ≻ {𝑏} ≻ {𝑑}

𝑞 : {𝑏} ≻ {𝑎} ≻ {𝑐} ≻ {𝑐′} ≻ {𝑑}

In this profile, the scores are 𝑆 (𝑐) = 𝑆 (𝑐′) = 𝑆 (𝑏) = 𝑞, 𝑆 (𝑎) = 𝑞 − 1, and 𝑆 (𝑑) = 𝑞 − 2 + 𝑞𝑠 (𝜏212)2. By
our hypothesis on 𝑞, we have 𝑆 (𝑑) > 𝑆 (𝑎) and 𝑎 is eliminated first. By independence of clones, this
implies that if we remove the clone 𝑐′ of 𝑐 , 𝑎 should not be the winner. However, in this new profile
𝑃 ′ without 𝑐′, the scores are 𝑆 (𝑐) = 𝑆 (𝑏) = 𝑞, 𝑆 (𝑎) = 𝑞 − 1 and 𝑆 (𝑑) = 𝑞 − 2, so 𝑑 is eliminated
first. Then 𝑆 (𝑐) = 𝑆 (𝑏) = 𝑞 and 𝑆 (𝑎) = 2𝑞 − 3, so 𝑐 or 𝑏 is eliminated next. In both cases, 𝑎 wins the
majority vote, which contradicts independence of clones. We can conclude that 𝑠 (𝜏212) = (1, 0, 0).
Step 5.3. We now focus on 𝜏121 = (1, 2, 1). Assume first that 𝑠 (𝜏121)1 < 1. Let 𝑞 ∈ N with

𝑞 > 1
1−𝑠 (𝜏121 )1 and consider the profile 𝑃 with 𝑞 orders {𝑎} ≻ {𝑏, 𝑐} ≻ {𝑑} and 𝑞 − 1 orders

{𝑏, 𝑐, 𝑑} ≻ {𝑎}. In this profile, 𝑎 is on top of more than half of the votes, so it should win by respect
for cohesive majorities. However, the scores are 𝑆 (𝑎) = 𝑞𝑠 (𝜏211)1 and 𝑆 (𝑏) = 𝑆 (𝑐) ⩾ 𝑆 (𝑑) = 𝑞 − 1.
By our hypothesis on 𝑞, 𝑆 (𝑑) > 𝑆 (𝑎), and 𝑎 is eliminated first, a contradiction.
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Assume now that 𝑠 (𝜏121)1 > 1. Let 𝑞 ∈ N with 𝑞 > 1
𝑠 (𝜏121 )1−1 and consider the profile 𝑃 .

𝑞 + 1 : {𝑑} ≻ {𝑏} ≻ {𝑎, 𝑎′}
𝑞 : {𝑏} ≻ {𝑎, 𝑎′} ≻ {𝑑}

𝑞 + 2 : {𝑎, 𝑎′} ≻ {𝑏} ≻ {𝑑}

In this profile, the scores are 𝑆 (𝑎) = 𝑆 (𝑎′) > 𝑆 (𝑑) = 𝑞 + 1 and 𝑆 (𝑏) = 𝑞𝑠 (𝜏121)1. By hypothesis on 𝑞,
we have 𝑆 (𝑏) > 𝑆 (𝑑), and 𝑑 is eliminated first. Then 𝑎′ (or 𝑎) is eliminated and 𝑏 wins the majority
vote against 𝑎 (or 𝑎′). Note that 𝑎 and 𝑎′ are clones in 𝑃 , so 𝑏 should also be a winner in the profile
𝑃 ′ without 𝑎′. In 𝑃 ′, the scores are 𝑆 (𝑎) > 𝑆 (𝑑) = 𝑞 + 1 and 𝑆 (𝑏) = 𝑞, so 𝑏 is eliminated first. This
contradicts independence of clones.
We now prove that 𝑠 (𝜏121)2 = 0. Let 𝑞 ∈ N with 𝑞 > 1

𝑠 (𝜏121 )2 and consider the following profile 𝑃 .

𝑞 : {𝑎} ≻ {𝑏, 𝑐} ≻ {𝑑}
𝑞 : {𝑎} ≻ {𝑏, 𝑑} ≻ {𝑐}

2𝑞 − 1 : {𝑐, 𝑑, 𝑏} ≻ {𝑎}
In this profile, 𝑎 is in the top indifference class of more than half of the voters, so it should be the sole
winner by respect for cohesive majorities. The scores are 𝑆 (𝑏) > 𝑆 (𝑑) = 𝑆 (𝑐) = 2𝑞 − 1 + 𝑞𝑠 (𝜏121)2
and 𝑆 (𝑎) = 2𝑞. By hypothesis on 𝑞, 𝑎 is eliminated first. This contradicts respect for cohesive
majorities and proves that 𝑠 (𝜏121) = (1, 0, 0).

Step 6.We now proceed to induction steps. First, we focus on dichotomous orders and show that
for all dichotomous orders 𝜏 = (𝑘, 𝑘 ′) we have 𝑠 (𝜏) = (1, 0). We prove it by induction on𝑚 = 𝑘 +𝑘 ′.
We know this is true for 𝜏21, 𝜏12, 𝜏13, 𝜏31, and 𝜏22, so this is true for𝑚 = 3 and𝑚 = 4. Assume by
induction that it is true up to some𝑚 ⩾ 4. Let 𝜏 = (𝑘, 𝑘 ′) with 𝑘 + 𝑘 ′ =𝑚 + 1 ⩾ 5. This means that
either 𝑘 ⩾ 3 or 𝑘 ′ ⩾ 3.
Step 6.1. Assume first that 𝑘 ⩾ 3, we will show that 𝑠 (𝜏)1 = 1. Assume for a contradiction that

𝑠 (𝜏)1 < 1. Take 𝑞 ∈ N such that 𝑞 > 1
1−𝑠 (𝜏 )1 and consider the profile 𝑃 :

• 𝑞 orders {𝑐1, . . . , 𝑐𝑘−2, 𝑎, 𝑎′} ≻ {𝑏1, . . . , 𝑏𝑘 ′ }.
• For all 𝑖 ∈ [2, 𝑘 − 2], 1 linear order {𝑐𝑖 } ≻ {𝑐1} ≻ · · · ≻ {𝑎} ≻ {𝑎′}.
• 1 linear order {𝑎} ≻ {𝑎′} ≻ {𝑐1} ≻ . . .

• 1 linear order {𝑎′} ≻ {𝑎} ≻ {𝑐1} ≻ . . .

• For all 𝑗 ∈ [1, 𝑘 ′], 𝑞 − 1 linear orders {𝑏 𝑗 } ≻ {𝑐1} ≻ · · · ≻ {𝑎} ≻ {𝑎′}
In this profile, the scores are 𝑆 (𝑎) = 𝑆 (𝑎′) = 𝑞𝑠 (𝜏)1 + 1, 𝑆 (𝑐1) = 𝑞𝑠 (𝜏)1, 𝑆 (𝑐𝑖 ) = 𝑞𝑠 (𝜏)1 + 1 for
𝑖 ∈ [2, 𝑘 − 2] and 𝑆 (𝑏 𝑗 ) = 𝑞 − 1 for 𝑗 ∈ [1, 𝑘 ′]. Since 𝑞 > 1

1−𝑠 (𝜏 )1 , 𝑞 − 1 > 𝑞𝑠 (𝜏)1 and 𝑐1 is eliminated
first. We do not care who wins except that it is not 𝑐1. Note that in this profile, 𝑎 and 𝑎′ are clones,
so in the profile 𝑃 ′ without 𝑎′, 𝑐1 should not be a winner. In 𝑃 ′, by induction hypothesis all order
types have scoring vector (1, 0, . . . , 0). Thus, the scores are 𝑆 (𝑎) = 𝑞 + 1, 𝑆 (𝑐1) = 𝑞, 𝑆 (𝑐𝑖 ) = 𝑞 + 1 for
𝑖 ∈ [2, 𝑘 − 2] and 𝑆 (𝑏 𝑗 ) = 𝑞 − 1 for 𝑗 ∈ [1, 𝑘 ′]. Therefore, 𝑏 𝑗 are successively eliminated. After this,
the score of 𝑐1 is 𝑆 (𝑐1) = 𝑞 + (𝑞 − 1)𝑘 ′ and the score of all other candidates is 𝑞 + 1. Since 𝑘 ′ > 0,
they are successively eliminated and 𝑐1 is the winner. This contradicts independence of clones.

Assume now for contradiction that 𝑠 (𝜏)1 > 1. Take 𝑞 ∈ N such that 𝑞 > 1
𝑠 (𝜏 )1−1 and consider the

profile 𝑃 described above, but with 𝑞 + 1 of each order of the last category instead of 𝑞 − 1. In this
profile, the scores are 𝑆 (𝑎) = 𝑆 (𝑎′) = 𝑞𝑠 (𝜏)1 + 1, 𝑆 (𝑐1) = 𝑞𝑠 (𝜏)1, 𝑆 (𝑐𝑖 ) = 𝑞𝑠 (𝜏)1 + 1 for 𝑖 ∈ [2, 𝑘 − 2]
and 𝑆 (𝑏 𝑗 ) = 𝑞+1 for 𝑗 ∈ [1, 𝑘 ′]. Since 𝑞 > 1

𝑠 (𝜏 )1−1 , 𝑆 (𝑐1) > 𝑆 (𝑏 𝑗 ) for all 𝑏 𝑗 , and some 𝑏 𝑗 is eliminated
first. From this point, all scoring vectors are (1, 0, . . . , 0) by induction hypothesis. The score of 𝑐1 is
now 𝑆 (𝑐1) = 2𝑞 + 1 and the score of any other candidate is 𝑞 + 1. As long as 𝑐1 is not eliminated,
no candidate can have a score higher than 𝑞 + 2, so 𝑐1 survives until the end and is the winner of
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the election. By independence of clones, it should also be the winner in 𝑃 ′ in which we remove
the clone 𝑎′ of 𝑎. In this profile, all scoring vectors are (1, 0, . . . , 0) by induction hypothesis. The
scores are 𝑆 (𝑐1) = 𝑞 and 𝑞 + 1 for all other candidates. Thus, 𝑐1 is eliminated first, which contradicts
independence of clones. This implies that 𝑠 (𝜏)1 = 1.
Step 6.2. If 𝑘 ⩽ 2 but 𝑘 ′ ⩾ 3, we use a similar reasoning. Let 𝑞 ∈ N, and consider the following

profile 𝑃 :

• 𝑞 orders {𝑐1, . . . , 𝑐𝑘 } ≻ {𝑏1, . . . , 𝑏𝑘 ′−2, 𝑎, 𝑎′}.
• 𝑞 linear orders {𝑐1} ≻ {𝑎} ≻ {𝑎′} ≻ . . . .
• If 𝑘 = 2, 𝑞 + 1 linear orders {𝑐2} ≻ {𝑐1} ≻ · · · ≻ {𝑎} ≻ {𝑎′}.
• 2𝑞 + 2 linear orders {𝑎} ≻ {𝑎′} ≻ {𝑐1} ≻ . . .

• 2𝑞 + 2 linear orders {𝑎′} ≻ {𝑎} ≻ {𝑐1} ≻ . . .

• For all 𝑗 ∈ [1, 𝑘 ′ − 2], 2𝑞 ± 1 linear orders {𝑏 𝑗 } ≻ {𝑐1} ≻ · · · ≻ {𝑎} ≻ {𝑎′}

If we assume 𝑠 (𝜏)1 < 1, we take 𝑞 > 1
1−𝑠 (𝜏 )1 and the profile in which each order of the last category

appears 2𝑞 − 1 times. In this profile, the scores are 𝑆 (𝑐1) = 𝑞 + 𝑞𝑠 (𝜏)1, 𝑆 (𝑏 𝑗 ) = 2𝑞 − 1 for all
𝑗 ∈ [1, 𝑘 ′ − 2], 𝑆 (𝑎) = 𝑆 (𝑎′) = 2𝑞 + 2 and if 𝑘 = 2, 𝑆 (𝑐2) > 𝑆 (𝑐1). Because of hypothesis on 𝑞,
𝑆 (𝑏 𝑗 ) > 𝑆 (𝑐1) for all 𝑏 𝑗 and 𝑐1 will be eliminated first. In this profile, 𝑎 and 𝑎′ are clones, so in
the profile 𝑃 ′ in which we remove 𝑎′, 𝑐1 should not be a winner. In 𝑃 ′, the scores are 𝑆 (𝑐1) = 2𝑞,
𝑆 (𝑎) = 2𝑞 + 2, 𝑆 (𝑏 𝑗 ) = 2𝑞 − 1 for all 𝑗 ∈ [1, 𝑘 ′ − 2] and if 𝑘 = 2, 𝑆 (𝑐2) = 2𝑞 + 1. Thus, the candidates
𝑏 𝑗 are eliminated, then 𝑐2 if 𝑘 = 2. At least two candidates are eliminated since𝑚 ⩾ 4, and at least
one of them is a 𝑏 𝑗 since 𝑘 ′ ⩾ 3, so the score of 𝑐1 is now 𝑆 (𝑐1) ⩾ 2𝑞 + (𝑞 + 1) + (2𝑞 − 1) = 5𝑞, and
the score of 𝑎 is 𝑆 (𝑎) = 4𝑞 + 4. 𝑐1 is the winner, which contradicts independence of clones.

If we now assume that 𝑠 (𝜏)1 > 1, we take 𝑞 > 1
𝑠 (𝜏 )1−1 and the profile 𝑃 in which each order of the

last category appears 2𝑞 + 1 times. This time, some 𝑏 𝑗 is eliminated first, giving 2𝑞 + 1 additional
points to 𝑐1, and all the other candidates 𝑏 𝑗 and 𝑐2 (if 𝑘 = 2) are eliminated successively, then 𝑎′

is eliminated, and the scores are 𝑆 (𝑎) = 4𝑞 + 4 and 𝑆 (𝑐1) ⩾ 5𝑞 + 1 for the same reasons as above,
thus 𝑐1 is the winner. However, if we remove the clone 𝑎′ of 𝑎, 𝑐1 is eliminated first with the lowest
score of 𝑆 (𝑐1) = 2𝑞. This contradicts independence of clones. We conclude that 𝑠 (𝜏) = (1, 0) for all
dichotomous order types 𝜏 .
Step 7.We now proceed to the ultimate step. Note that for all remaining order types 𝜏 where

𝑘 = |𝜏 | is the length of the order, one of the following is true: (1) 𝜏 (1) ⩾ 3, (2) 𝜏 (𝑘) ⩾ 3, (3) there is
some 𝑗 ∉ {1, 𝑘} such that 𝜏 ( 𝑗) ⩾ 2 or (4) there is some 𝑗 ∉ {1, 𝑘 − 1} such that 𝜏 ( 𝑗) = 𝜏 ( 𝑗 + 1) = 1.
Note that any order type of size 𝑘 = |𝜏 | ⩾ 4 satisfies either (3) or (4). Moreover, we already prove
the results for dichotomous order types. The only order types of size 𝑘 = 3 which do not satisfy
any of the above conditions are 𝜏111, 𝜏211, 𝜏112 and 𝜏212, and we already prove the results for all of
these. Moreover, we also proved the result for 𝜏121 and thus for all order types on𝑚 ⩾ 4 candidates.
We prove the result for the remaining order types by induction on the number of candidates𝑚.
Let us assume that the result is true up to some𝑚 ⩾ 4, let’s prove it is true for𝑚 + 1. Let 𝜏 be an
order type for𝑚 + 1 candidates. We will use a similar idea as in the previous steps to prove that
𝑠 (𝜏) = (1, 0, . . . , 0). Let 𝑞 ∈ N and 𝑃 be the following profile on 𝐶 = {𝑎, 𝑎′, 𝑏, 𝑑, 𝑐1, . . . 𝑐𝑚−3}:

• 𝑞 orders of the type 𝜏 . We have 𝑏 in the top indifference class (𝑏 ∈ 𝐶1) and 𝑑 in the last
indifference class (𝑑 ∈ 𝐶𝑘 ). 𝑎 and 𝑎′ are in a position to be clones, which is possible because 𝜏
satisfies one of the 4 conditions detailed above. We either put them both in indifference class
𝑗 ∈ [1, 𝑘] (if 𝜏 satisfies one of the first three conditions) or we put 𝑎 alone in indifference
class 𝑗 ∉ {1, 𝑘 − 1} and 𝑎′ alone in indifference class 𝑗 + 1 (if 𝜏 satisfies the fourth condition).
• 𝑞 linear orders {𝑏} ≻ {𝑑} ≻ · · · ≻ {𝑎} ≻ {𝑎′}.
• 2𝑞 ± 1 linear orders {𝑑} ≻ {𝑏} ≻ · · · ≻ {𝑎} ≻ {𝑎′}.
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• For all 𝑐 𝑗 that are in the top indifference class of orders of type 𝜏 , 𝑞 + 2 linear orders
{𝑐 𝑗 } ≻ {𝑏} ≻ · · · ≻ {𝑎} ≻ {𝑎′}.
• For all 𝑐 𝑗 that are not in the top indifference class of the orders of type 𝜏 , 2𝑞 + 2 linear orders
{𝑐 𝑗 } ≻ {𝑏} ≻ · · · ≻ {𝑎} ≻ {𝑎′}.
• If 𝑎 and 𝑎′ are in the top indifference class of the orders of type 𝜏 , 2 orders of this kind,
otherwise, 2𝑞 + 2 linear orders {𝑎} ≻ {𝑎′} ≻ {𝑏} ≻ . . .

• If 𝑎 and 𝑎′ are in the top indifference class of the orders of type 𝜏 , 2 orders of this kind,
otherwise 2𝑞 + 2 linear orders {𝑎′} ≻ {𝑎} ≻ {𝑏} ≻ . . . .

Step 7.1.We assume first that 𝑠 (𝜏)1 > 1. Then, we take the profile 𝑃 with 2𝑞 + 1 orders {𝑑} ≻
{𝑏} ≻ · · · ≻ {𝑎} ≻ {𝑎′}. Moreover, we take 𝑞 > 1

𝑠 (𝜏 )1−1 . The scores are 𝑆 (𝑎) ⩾ 𝑆 (𝑎′) ⩾ 2𝑞 + 2,
𝑆 (𝑏) = 𝑞+𝑞𝑠 (𝜏)1, 𝑆 (𝑑) = 2𝑞+1 and for all 𝑐 𝑗 , 𝑆 (𝑐 𝑗 ) ⩾ 2𝑞+2. Because of hypothesis on 𝑞, 𝑆 (𝑏) > 𝑆 (𝑑).
Moreover, 𝑆 (𝑎) > 𝑆 (𝑑) and 𝑆 (𝑐 𝑗 ) > 𝑆 (𝑑) for all 𝑗 ∈ [1,𝑚 − 3]. Thus, 𝑑 is eliminated first. From this
point all order types have scoring vector (1, 0, . . . , 0) by induction hypothesis. The new score of 𝑏
is 𝑆 (𝑏) = 4𝑞 + 1. As long as 𝑏 is not eliminated, the score of any other candidate is at most 2𝑞 + 2,
except for 𝑎 which get a score 4𝑞 + 4 once its clone 𝑎′ is eliminated. In the end, only 𝑎 and 𝑏 remain,
with 𝑆 (𝑏) ⩾ 𝑞 + 𝑞 + 2𝑞 + 1 + (𝑚 − 3) (𝑞 + 2) ⩾ 5𝑞 + 3 (since𝑚 ⩾ 4) and 𝑆 (𝑎) = 4𝑞 + 4. Thus, 𝑏 wins
the majority vote. By independence of clones, 𝑏 should also win in the profile without the clone 𝑎′
of 𝑎. By induction hypothesis, all orders have scoring vector (1, 0, . . . , 0) in this profile. The scores
are 𝑆 (𝑏) = 2𝑞, 𝑆 (𝑑) = 2𝑞 + 1, 𝑆 (𝑐 𝑗 ) = 2𝑞 + 2 for all 𝑗 ∈ [1,𝑚 − 3] and 𝑆 (𝑎) = 4𝑞 + 4. Thus, 𝑏 is
eliminated first, which contradicts independence of clones.
Step 7.2. We now assume that 𝑠 (𝜏)1 < 1. Then, we take the profile 𝑃 with 2𝑞 − 1 orders
{𝑑} ≻ {𝑏} ≻ · · · ≻ {𝑎} ≻ {𝑎′}. Moreover, we take 𝑞 > 1

1−𝑠 (𝜏 )1 . In this profile, the scores are
𝑆 (𝑎) ⩾ 𝑆 (𝑎′) ⩾ 2𝑞 + 2, 𝑆 (𝑏) = 𝑞𝑠 (𝜏)1 + 𝑞, 𝑆 (𝑑) = 2𝑞 − 1 and 𝑆 (𝑐𝑖 ) ⩾ 𝑞𝑠 (𝜏)1 + 𝑞 + 2 > 𝑆 (𝑏). Because
of hypothesis on 𝑞, we have that 𝑆 (𝑑) > 𝑆 (𝑏). Thus, 𝑏 is eliminated first. By independence of
clones, this implies that in the profile 𝑃 ′ without the clone 𝑎′ of 𝑎, 𝑏 should not be a winner. By
induction hypothesis, all orders have scoring vector (1, 0, . . . , 0) in this profile, and thus the first
candidate eliminated is 𝑑 with score 𝑆 (𝑑) = 2𝑞 − 1. The score of 𝑏 is then 𝑆 (𝑏) = 4𝑞 − 1, the score
of 𝑎 is 𝑆 (𝑎) = 4𝑞 + 4 and all other candidates have score at most 2𝑞 + 2 until 𝑏 is eliminated. Thus,
the 𝑐 𝑗 are successively eliminated until only 𝑎 and 𝑏 remain. The scores are 𝑆 (𝑎) = 4𝑞 + 4 and
𝑆 (𝑏) ⩾ 𝑞 + 𝑞 + (2𝑞 − 1) + (𝑚 − 3) (𝑞 + 2) ⩾ 5𝑞 + 1 (since𝑚 ⩾ 4). 𝑏 wins the majority vote, which
contradicts independence of clones. Therefore 𝑠 (𝜏)1 = 1.
Step 7.3. We finally show that 𝑠 (𝜏)2 = 0. Assume that 𝑠 (𝜏)2 > 0. Let 𝑞 > 1

𝑠 (𝜏 )2 . If 𝜏 (1) = 1,
consider the profile 𝑃 with 𝐶 = {𝑎, 𝑐1, . . . , 𝑐𝑚}:
• For each 𝑖 ∈ [1,𝑚], 𝑞 orders of the type 𝜏 with 𝐶1 = {𝑎} as the top indifference class and
𝐶2 = {𝑐𝑖 , . . . , 𝑐𝑖+𝜏 (2)−1} as the second indifference class (subscripts should be considered
modulo𝑚).
• 𝑚𝑞 − 1 dichotomous orders {𝑐1, . . . , 𝑐𝑚} ≻ {𝑎}.

In this profile, 𝑎 appears at the top of more than half of the votes, so by respect for cohesive
majorities it should be the sole winner. The scores are 𝑆 (𝑎) =𝑚𝑞 and 𝑆 (𝑐𝑖 ) ⩾ 𝑚𝑞 − 1 +𝑞𝑠 (𝜏)2 > 𝑚𝑞

by hypothesis on 𝑞. Thus, 𝑎 is eliminated first, which contradicts respect for cohesive majorities.
Now, if 𝜏 (1) ⩾ 2, consider the following profile 𝑃 on 𝐶 = {𝑎, 𝑎′, 𝑑, 𝑏, 𝑐1, . . . , 𝑐𝑚−3}:
• 𝑞 orders of type 𝜏 with 𝑎 and 𝑎′ in the top indifference class𝐶1, 𝑏 in the second indifference

class 𝐶2 and 𝑑 in the last indifference class 𝐶𝑘 (which is not the second one because 𝜏 is not
dichotomous).
• 𝑞 − 2 linear orders {𝑏} ≻ {𝑑} ≻ {𝑎} ≻ {𝑎′} ≻ . . .

• 𝑞 − 1 linear orders {𝑑} ≻ {𝑏} ≻ {𝑎} ≻ {𝑎′} ≻ . . .
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• For all 𝑐𝑖 that are not in the top indifference class𝐶1 of the orders with type 𝜏 , 𝑞 linear order
{𝑐𝑖 } ≻ {𝑑} ≻ {𝑏} ≻ {𝑎} ≻ {𝑎′} ≻ . . .

In this profile, the scores are 𝑆 (𝑎) = 𝑆 (𝑎′) = 𝑞, 𝑆 (𝑏) = 𝑞 − 2 + 𝑞𝑠 (𝜏)2, 𝑆 (𝑑) = 𝑞 − 1 and 𝑆 (𝑐𝑖 ) ⩾ 𝑞

for 𝑖 ∈ [1,𝑚 − 3]. By our hypothesis on 𝑞, 𝑆 (𝑏) > 𝑆 (𝑑) and 𝑑 is eliminated first. By our induction
hypothesis, all scoring vectors are now (1, 0, . . . , 0). The score of 𝑏 is now 𝑆 (𝑏) = 2𝑞 − 3 and the
score of any other candidate is at most 𝑞 until 𝑏 is eliminated. Thus, all candidates are successively
eliminated until only 𝑏 remains and wins. By independence of clones, 𝑏 should also win in the
profile 𝑃 ′ in which we remove the clone 𝑎′ of 𝑎. In this profile, 𝑏 has the lowest score 𝑆 (𝑏) = 𝑞 − 2,
so it is eliminated first, which contradicts independence of clones. Therefore, 𝑠 (𝜏)2 = 0.

We proved that 𝑠 (𝜏)1 = 1 and 𝑠 (𝜏)2 = 0, and by definition 𝑠 (𝜏)1 ⩾ 𝑠 (𝜏)2 ⩾ 𝑠 (𝜏)3 ⩾ . . . ⩾ 𝑠 (𝜏)𝑘 ⩾ 0,
so 𝑠 (𝜏) = (1, 0, . . . , 0). The induction concludes that for all order types 𝜏 , we have 𝑠 (𝜏) = (1, 0, . . . , 0),
which means that 𝑓 is actually Approval-IRV. □

A.3 Proof of Theorem 4.3
Theorem 4.3. Approval-IRV is the unique elimination scoring rule that is consistent with IRV on

profiles of linear orders and satisfies indifference monotonicity.

Proof. Theorem 4.2 already shows that this rule is indifference monotonic. The consistency
with IRV is clear. Let’s now show that no other elimination scoring rule satisfies these two axioms.

For this, we prove that for all order types 𝜏 = (𝜏 (1), . . . , 𝜏 (𝑘)), the associated scoring vector is
𝑠 (𝜏) = (1, 0, . . . , 0).

First, we use consistency with IRV to show that it is the case for all linear orders. Because there
is only one possible linear order type 𝜏 = (1, . . . , 1) for each number of candidates𝑚, we denote
𝑠 (𝑚) = 𝑠 (𝜏) for |𝜏 | = 𝑚. We know that 𝑠 (𝑚)1 > 0 otherwise 𝑠 (𝑚) = (0, 0, . . . , 0, 0) and 𝑎 is not
the only winner in the profile with one ranking where 𝑎 is first {𝑎} ≻ . . . . Thus, we can assume
without loss of generality that for all𝑚, 𝑠 (𝑚)1 = 1 (as there is only one linear order type for each
number of candidates). We now prove that for all𝑚, 𝑠 (𝑚)2 = 0.
We prove it by induction on𝑚. It is clearly true for𝑚 = 2 as 𝜏 = (1, 1) so 𝑠 (2) = (1, 0). Assume it

is true for𝑚 ⩾ 2, we prove it for𝑚 + 1.
Assume for contradiction that 𝑠 (𝑚 + 1)2 > 0. Let 𝑞 ∈ N with 𝑞 > 1

𝑠 (𝑚+1)2 and consider the profile
𝑃 on 𝐶 = {𝑎, 𝑐1, . . . , 𝑐𝑚}:
• For each 𝑖 ∈ [1,𝑚], 𝑞 linear orders {𝑐𝑖 } ≻ {𝑎} ≻ {𝑐𝑖+1} ≻ · · · ≻ {𝑐𝑖+𝑚−1}, where the index
of the 𝑐𝑖 have to be taken modulo𝑚.
• 𝑞 − 1 linear orders {𝑎} ≻ {𝑐1} ≻ · · · ≻ {𝑐𝑚}.

In this profile, observe that each 𝑐𝑖 appears at least 𝑞 times last in a linear order. With IRV, 𝑎 is
eliminated in the first round, as it has score 𝑆 (𝑎) = 𝑞−1while all other candidates have score 𝑠 (𝑐𝑖 ) =
𝑞. However, here the scores are 𝑆 (𝑎) = (𝑞−1) +𝑚𝑞𝑠 (𝑚+1)2, and 𝑆 (𝑐𝑖 ) ⩽ 𝑞+ (𝑚−1)𝑞𝑠 (𝑚+1)2+𝑞 ·0.
We only upper bound because we know that 𝑠 (𝑚+1)𝑖 ⩽ 𝑠 (𝑚+1)2 for all 𝑖 ⩾ 3. However, because we
assumed 𝑞 > 1

𝑠 (𝑚+1)2 , we have 𝑆 (𝑎) > 𝑆 (𝑐𝑖 ) for all 𝑐𝑖 . Thus, one 𝑐𝑖 is eliminated, assume 𝑐1 without
loss of generality. By induction hypothesis, all scoring vectors are of the form (1, 0, . . . , 0) from this
point. The new score of 𝑎 is 𝑆 (𝑎) = 2𝑞 − 1 and the score of all other candidates is upper bounded
by 𝑞 until 𝑎 is eliminated. Therefore, 𝑎 is never eliminated, and wins the election, a contradiction.
This shows that 𝑠 (𝑚 + 1)2 = 0. Since 𝑠 (𝑚 + 1)𝑖 ⩽ 𝑠 (𝑚 + 1)2 for all 𝑖 ⩾ 3, then the scoring vector of
the linear order on𝑚 + 1 candidates is 𝑠 (𝑚 + 1) = (1, 0, . . . , 0).
We can now show that this is true for all order types. The proof is done by induction on the

number of candidates𝑚. It is clearly true for𝑚 = 2 as the only possible order is linear. Assume
that it is true up to𝑚 − 1 and let us show it for𝑚 ⩾ 3.
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To show it is the case for all order types on some number of candidates𝑚 ⩾ 3, we will do another
induction, this time on the number of candidates that are not alone in their indifference class (i.e.,
on 𝑝 =

∑
𝑖:𝜏 (𝑖 )>1 𝜏 (𝑖)). For 𝑝 = 0, the order is linear, so we already know that its scoring vector is

(1, 0, . . . , 0). Assume it is true up to some 𝑝 ⩾ 0, and let us prove this is also true for 𝑝 + 1.
Assume by contradiction that there is an order type 𝜏 = (𝜏 (1), . . . , 𝜏 (𝑘)) with∑𝑖:𝜏 (𝑖 )>1 𝜏 (𝑖) = 𝑝+1

but the scoring vector is such that 𝑠 (𝜏)1 ≠ 1 or 𝑠 (𝜏)2 > 0. Let 𝑗 be the minimal index such that
𝜏 ( 𝑗) > 1. Define the order type 𝜏 ′ = (𝜏 (1), . . . , 𝜏 ( 𝑗) − 1, 1, 𝜏 ( 𝑗 + 1), . . . , 𝜏 (𝑘)). Equivalently, we
have 𝜏 ′ (𝑖) = 𝜏 (𝑖) if 𝑖 < 𝑗 , 𝜏 ′ ( 𝑗) = 𝜏 ( 𝑗) − 1, 𝜏 ′ ( 𝑗 + 1) = 1 and 𝜏 ′ (𝑖) = 𝜏 (𝑖 − 1) for 𝑖 > 𝑗 + 1. We
have

∑
𝑖:𝜏 ′ (𝑖 )>1 𝜏

′ (𝑖) ⩽ ∑
𝑖:𝜏 (𝑖 )>1 𝜏 (𝑖) − 1 ⩽ 𝑝 , so by induction on 𝑝 its associated scoring vector is

𝑠 (𝜏 ′) = (1, 0, . . . , 0).
Let us assume first that 𝑠 (𝜏)1 < 1. Take 𝑞 ∈ N such that 𝑞 > 3

1−𝑠 (𝜏 )1 , and consider the following
profile 𝑃 ′ with candidate set 𝐶 = {𝑎, 𝑏, 𝑑, 𝑐1, . . . , 𝑐𝑚−3}.
• 𝑞 orders with order type 𝜏 ′ such that 𝑎 ∈ 𝐶 𝑗+1 (alone in its indifference class), 𝑏 ∈ 𝐶1, and
𝑑 ∉ 𝐶1 (this is possible since 𝜏 has at least two indifference classes, so 𝜏 ′ has at least three).
• 𝑞 + 2 linear orders {𝑏} ≻ {𝑑} ≻ {𝑎} ≻ . . . .
• 2𝑞 linear orders {𝑎} ≻ {𝑑} ≻ . . . .
• 2𝑞 − 1 linear orders {𝑑} ≻ {𝑎} ≻ . . . .
• For all 𝑗 ∈ [1,𝑚 − 3], 2𝑞 linear orders {𝑐 𝑗 } ≻ {𝑑} ≻ {𝑎} ≻ . . . .

Since 𝜏 ′ satisfies the inductive hypothesis on 𝑝 and the other orders are linear orders, all order
types in this profile are associated with scoring vectors of the form (1, 0, . . . , 0). Then, the score of
every 𝑐 𝑗 is 𝑆 (𝑐 𝑗 ) ⩾ 2𝑞. The score of 𝑎 is 𝑆 (𝑎) = 2𝑞, the score of 𝑏 is 𝑆 (𝑏) = 2𝑞 + 2 and the score of 𝑑
is 𝑆 (𝑑) = 2𝑞 − 1. Therefore, 𝑑 is eliminated first. By induction on𝑚, for all the following steps all
scoring vectors are also of the form (1, 0, . . . , 0). Thus, the new score of 𝑎 is 𝑆 (𝑎) = 4𝑞 − 1, the one
of 𝑏 is 𝑆 (𝑏) = 2𝑞 + 2 and the score of all other candidates is 𝑆 (𝑐𝑖 ) ⩽ 3𝑞. After each elimination, the
score of 𝑎 increases and the one of all other candidates is always upper bounded by 3𝑞 as long as 𝑎
is not eliminated. Thus, 𝑎 is the winner of this election.

Now, consider the profile 𝑃 in which we applied 𝑎-hover transformation to every order of type
𝜏 ′, and thus obtained orders of type 𝜏 (by merging 𝑎 with the indifference class above it). By
indifference monotonicity, 𝑎 is still a winner in 𝑃 . In 𝑃 , the score of 𝑏 is 𝑆 (𝑏) = 𝑞 + 2 + 𝑞𝑠 (𝜏)1, the
score of 𝑑 is 𝑆 (𝑑) ⩾ 2𝑞 − 1, the score of 𝑎 is 𝑆 (𝑎) ⩾ 2𝑞 and the score of all other candidates 𝑐 𝑗 is
𝑆 (𝑐 𝑗 ) ⩾ 2𝑞. Because 𝑞 > 3

1−𝑠 (𝜏 )1 , we have 𝑆 (𝑑) > 𝑆 (𝑏), so 𝑏 is eliminated first. Therefore, 𝑑 get
ranked first in 𝑞 + 2 additional orders. By induction on𝑚, for all the following steps all scoring
vectors are of the form (1, 0, . . . , 0). The new score of 𝑑 is 𝑆 (𝑑) ⩾ 3𝑞 + 1, while the score of all other
candidates is at most 3𝑞 as long as 𝑑 is not eliminated. Thus, 𝑑 is the sole winner instead of 𝑎. This
shows by contradiction that 𝑠 (𝜏)1 ⩾ 1.

Assume now that 𝑠 (𝜏)1 > 1. Take 𝑞 ∈ N such that 𝑞 > 1
𝑠 (𝜏 )1−1 and denote 𝑃

′ the following profile.
• 𝑞 orders with order type 𝜏 ′ with 𝑎 ∈ 𝐶 𝑗+1 (alone in its indifference class), 𝑏 ∈ 𝐶1 and 𝑑 at
the bottom of the order: If 𝑗 < 𝑘 , then 𝑑 ∈ 𝐶𝑘+1 and if 𝑗 = 𝑘 , 𝑑 ∈ 𝐶𝑘 (in the second case,
𝐶𝑘+1 = {𝑎}).
• 𝑞 − 2 linear orders {𝑏} ≻ {𝑎} ≻ {𝑑} ≻ . . . .
• 2𝑞 linear orders {𝑎} ≻ {𝑏} ≻ . . . .
• 2𝑞 − 1 linear orders {𝑑} ≻ {𝑏} ≻ {𝑎} > . . . .
• For all 𝑗 ∈ [1,𝑚 − 3], 2𝑞 linear rankings {𝑐 𝑗 } ≻ {𝑏} ≻ {𝑎} ≻ . . . .

In this profile, all scoring vectors are (1, 0, . . . , 0). The score of 𝑎 is 𝑆 (𝑎) = 2𝑞, the score of 𝑏 is
𝑆 (𝑏) = 2𝑞−2, the score of 𝑑 is 𝑆 (𝑑) = 2𝑞−1 and the score of all 𝑐𝑖 is 𝑆 (𝑐𝑖 ) ⩾ 2𝑞. Thus, 𝑏 is eliminated
first. Now, by induction on𝑚 all scoring vectors are (1, 0, . . . , 0). The score of 𝑎 is 𝑆 (𝑎) ⩾ 3𝑞 − 2,
the score of 𝑑 is 𝑆 (𝑑) ⩽ 3𝑞 − 3 and the score of all other 𝑐 𝑗 is 𝑆 (𝑐𝑖 ) ⩽ 3𝑞. Moreover, since 𝑑 is in
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the last possible position in the first 𝑞 − 2 orders (originally with order type 𝜏 ′), the score of 𝑑 is
necessarily smaller than the one of all 𝑐 𝑗 . Thus, 𝑑 is eliminated next, and the score of 𝑎 is now at
least 𝑆 (𝑎) ⩾ 5𝑞 − 3. The score of all other candidates 𝑐 𝑗 is upper bounded 3𝑞 as long as 𝑎 is not
eliminated. The candidates 𝑐 𝑗 get successively eliminated and 𝑎 is the winner.
Consider the profile 𝑃 obtained from 𝑃 ′ by applying 𝑎-hover transformations to all orders

with type 𝜏 ′ (thus giving an order with order type 𝜏). By indifference monotonicity, 𝑎 is also
a winner in this profile. Note that in the rankings with order type 𝜏 , 𝑑 is always in the last
indifference class, therefore getting score 0 from the voters with this order type. In 𝑃 , the score
of 𝑏 is 𝑆 (𝑏) = 𝑞𝑠 (𝜏)1 + 𝑞 − 2, the score of 𝑑 is 𝑆 (𝑑) = 2𝑞 − 1, the score of 𝑎 is 𝑆 (𝑎) ⩾ 2𝑞 and the
score of all other candidates 𝑐 𝑗 is 𝑆 (𝑐 𝑗 ) ⩾ 2𝑞. Since 𝑞 > 1

𝑠 (𝜏 )1−1 , 𝑆 (𝑏) > 𝑆 (𝑑), thus 𝑑 is eliminated
first. By induction on𝑚, we can now assume that all order types are associated with scoring vector
(1, 0, . . . , 0). Therefore, 𝑏 has score 𝑆 (𝑏) = 4𝑞 − 3, and 𝑎 and all 𝑐 𝑗 all have score upper bounded by
3𝑞 − 2 as long as 𝑏 is not eliminated. Moreover, the elimination of 𝑎 or any 𝑐 𝑗 increases the score of
𝑏. Therefore, 𝑏 wins instead of 𝑎 in 𝑃 . This shows by contradiction that 𝑠 (𝜏)1 = 1.

We now show that 𝑠 (𝜏)2 = 0. Assume by contradiction that 𝑠 (𝜏)2 > 0. Take 𝑞 ∈ N such that
𝑞 > 1

𝛼2
+ 2 and consider the following profile 𝑃 ′.

• 𝑞 − 2 orders with type 𝜏 ′ with 𝑎 ∈ 𝐶 𝑗+1 (alone in its indifference class), 𝑏 ∈ 𝐶1 and 𝑑 in the
second indifference class (𝑎 excluded): If 𝑗 ≠ 1, then 𝑑 ∈ 𝐶2 and otherwise 𝑑 ∈ 𝐶3 (because
𝐶2 = {𝑎}).
• 𝑞 + 1 linear orders {𝑏} ≻ {𝑑} ≻ {𝑎} ≻ . . .

• 2𝑞 linear orders {𝑎} ≻ {𝑑} ≻ . . .

• 2𝑞 − 2 linear orders {𝑑} ≻ {𝑎} ≻ . . .

• For all 𝑗 ∈ [1,𝑚 − 3], 2𝑞 linear orders {𝑐 𝑗 } ≻ {𝑑} ≻ {𝑎} ≻ . . . .

In this profile, all order types are associated with scoring vectors of the form (1, 0, . . . , 0). The
score of 𝑎 is 𝑆 (𝑎) = 2𝑞, the score of 𝑏 is 𝑆 (𝑏) = 2𝑞 − 1, the score of 𝑑 is 𝑆 (𝑑) = 2𝑞 − 2 and the
score of all 𝑐 𝑗 is 𝑆 (𝑐 𝑗 ) = 2𝑞. Thus, 𝑑 is eliminated first. By induction on𝑚, all order types are now
associated with scoring vectors of the form (1, 0, . . . , 0). The score of 𝑎 is now 𝑆 (𝑎) = 4𝑞 − 2, the
score of 𝑏 is 𝑆 (𝑏) = 2𝑞 − 1, and all other candidates have score lower than 3𝑞 − 2 but greater than
2𝑞. 𝑏 is eliminated next, then the candidates 𝑐 𝑗 . After each elimination (of 𝑏 or some 𝑐 𝑗 ), the score
of 𝑎 increases, and the score of all other candidates remains bounded by 3𝑞 − 2 as long as 𝑎 is not
eliminated. Therefore, 𝑎 is the winner in 𝑃 ′.

If we apply 𝑎-hover transformations (by moving 𝑎 in the indifference class above) for all orders
with type 𝜏 ′, we obtain orders with type 𝜏 , and a new profile 𝑃 . By indifference monotonicity, 𝑎
should be a winner in 𝑃 . Observe that 𝑑 is always in the second indifference class in orders with
order type 𝜏 . In 𝑃 , the score of 𝑏 is 𝑆 (𝑏) = 2𝑞 − 1, the score of 𝑑 is 𝑆 (𝑑) = (𝑞 − 2)𝛼2 + 2𝑞 − 2, the
score of 𝑎 is 𝑆 (𝑎) ⩾ 2𝑞 and the score of other candidates 𝑐 𝑗 is 𝑆 (𝑐 𝑗 ) ⩾ 2𝑞. Thus, since 𝑞 > 1

𝛼2
+ 2,

𝑆 (𝑑) > 𝑆 (𝑏) and 𝑏 is eliminated first. Now, by induction on𝑚, all order types are associated with
scoring vectors of the form (1, 0, . . . , 0). The score of 𝑑 is 𝑆 (𝑑) ⩾ 3𝑞 − 1. The score of all other
candidates (including 𝑎) is upper bounded by 3𝑞 − 2 as long as 𝑑 is not eliminated. Therefore, 𝑎 and
the candidates 𝑐 𝑗 will be successively eliminated and there eliminations can only make the score of
𝑑 increase as the other scores will still be upper bounded by 3𝑞 − 2. 𝑑 wins the election in 𝑃 , which
contradicts indifference monotonicity. We proved that 𝑠 (𝜏)2 = 0.
Since by definition of scoring vectors we have 𝑠 (𝜏)2 ⩾ 𝑠 (𝜏) 𝑗 for all 𝑗 ⩾ 2, this implies that the

order type 𝜏 is associated to the scoring vector 𝑠 (𝜏) = (1, 0, . . . , 0). Induction on 𝑝 concludes that
this is true for all order types on𝑚 candidates. Induction on𝑚 concludes that it is true for all order
types. □
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B FURTHER DETAILS ON EXPERIMENTS
In this appendix, we give further details on our experiments. In particular, we describe the various
datasets we used in Appendix B.1, and we show and discuss the complete set of experimental
results we obtained for the single-winner rules (Approval-IRV and Split-IRV) in Appendix B.2.

B.1 Datasets
In our experiments, we generated profiles of weak orders in two steps: first, we sample a profile of
linear orders (rankings), and second, we introduce indifferences.

We now describe the several models we used to obtain profiles of linear orders.

• Impartial Culture: rankings are drawn i.i.d. uniformly at random among all𝑚! possible
rankings.
• Mixture of 𝑘 Mallows: we first randomly sample 𝑘 central rankings 𝜎1, . . . , 𝜎𝑘 uniformly

at random. Then, for each voter we chose uniformly at random one of the 𝑘 central rankings,
and we sample a ranking deviating from this central ranking using a Mallows model with
dispersion parameter 𝜙 ∈ [0, 1]. In our experiments, we take 𝜙 = 0.5 and 𝑘 = 4. We recall
that for a Mallows model of parameter 𝜙 and central ranking 𝜎 , the probability to sample
a ranking 𝜌 is 𝜙KT(𝜎,𝜌 )/𝐶 where KT is the Kendall-Tau distance and 𝐶 a normalization
constant.
• 𝑑-dimensional Euclidean: voters and candidates are associated to ideal positions 𝑝 (𝑣), 𝑝 (𝑐)

in a 𝑑-dimensional metric space (here R𝑑 ), and voters rank candidates in order of increasing
distance between the voter’s position 𝑝 (𝑣) and candidates’ positions 𝑝 (𝑐). In our experiments,
we take 𝑑 ∈ {1, 2}, and we sample the positions uniformly at random from the unit square
or the unit disc.
• Sampling from real data: using a dataset of real rankings (potentially with weights), we

randomly sample rankings from the dataset with replacement (based on the weights if they
exist, otherwise uniformly at random).

For the last method, we need real datasets. We used data from two sources, described below.

• French presidential elections: in 2017 and 2022, French voters could participate in online
surveys in which they could try different alternative voting methods, such as approval or
IRV [Bouveret et al., 2018, Delemazure and Bouveret, 2024]. We use the preferences given
by the participants for the IRV method. As the authors note, the sample of participants is
heavily biased towards the left, so in order to obtain a distribution of the votes more faithful
to the population-wide distribution of opinions, we re-weighted the voters based on their
official vote at the election, as proposed by the authors.
• Irish election: we use the datasets of elections held in Dublin, Ireland, in 2002 for which
the IRV method with truncated ballot was used, as available in PrefLib [Mattei and Walsh,
2013].

In both cases, voters were allowed to only give truncated rankings, for instance by giving
only their top-4 candidates, and implicitly reporting indifference between all the others. In our
experiments, we only kept the voters who gave full rankings. (This is the reason we did not use
datasets from U.S. elections [e.g., Otis, 2022], which contain only very truncated rankings.) The
following table describes the number of voters 𝑛 and candidate𝑚 for each election. Note that the
number of voters 𝑛 we provide is the one after removing all incomplete orders.
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Fig. 20. Average Borda score of the winner (normalized by dividing by 𝑛) for various datasets.
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Fig. 21. Frequency of agreement between the rule and linear-order IRV for various datasets.

France 2017 France 2022 Dublin Meath Dublin West

𝑛 404 5 126 3 165 4 810
𝑚 11 12 14 9

Finally, the two methods we used to introduce indifferences in the complete rankings of these
datasets are already described in Section 6.

B.2 Results
As explained in Section 6.1, we compare Approval-IRV and Split-IRV based on the winner they select.
We present here the results on 5 additional datasets. Moreover, in addition to the average Borda
score of the winning candidate chosen by each rule (Figure 20) and the frequency of agreement
between the rules and linear-order IRV (Figure 21), we provide in Figure 22 the frequency of finding
the Condorcet winner for each rule. Of course, this frequency is upper bounded by the frequency
with which a Condorcet winner exists, and so we also indicate that frequency for each dataset,
noting that this value is not always 100%.

For Euclidean datasets, we show in Figure 23 the average distortion [Anshelevich et al., 2018] of
the winner selected by the rules. For a given Euclidean profile in which voters and candidates are
associated to positions 𝑝 (𝑣), 𝑝 (𝑐) ∈ R𝑑 , the cost of a candidate is defined as cost(𝑐) = ∑

𝑣 ∥𝑝 (𝑣) −
𝑝 (𝑐)∥ (where ∥ · ∥ is the Euclidean norm), and the distortion of the rule for a given profile 𝑃 in
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Fig. 22. Frequency of finding the Condorcet winner, and frequency of such candidate existing for various
datasets.
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(a) Average distortion of the winner.
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Fig. 23. The average distortion of the winner (Figure a) and the frequency of returning the candidate with
the lowest distortion for each rule (Figure b).

which the rule selects the candidate𝑤 ∈ 𝐶 is defined as

dist(𝑓 , 𝑃) = cost(𝑤)
min𝑐∈𝐶 cost(𝑐) ,

which is the factor by which the cost of 𝑤 is higher compared to the cost of the cost-optimal
candidate. The distortion of any candidate𝑤 is lower bounded by 1, and the lower it is, the closer
it is to optimal. The average distortion is simply the average of this value over all sampled profiles
for a given dataset.
The conclusions we can draw from the additional datasets are similar to the observations that

we already described in Section 6.1. We only add that Approval-IRV returns the Condorcet winner
more frequently than Split-IRV, when such a candidate exists. We also observe a surprising “spike”
in the curves obtained for the 1D-Euclidean model with indifferences when the radius is 𝑟 ≈ 0.25,
and think it could be interesting to investigate this.
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B.3 Map of Elections
Here, we provide a version of Figure 16 from Section 6.1 (showing Borda score differences on the
map of elections) with a broader value range, to be able to identify instances where Approval-IRV
performs much better than Split-IRV.

Fig. 24. Map of elections showing the difference in Borda score (with respect to the underlying linear order
profile) between the Approval-IRV and Split-IRV winner, capped to lie in [−800, 800], summed over all
probabilities of merging 𝑝 = 0.1, 0.2, . . . , 0.9 in the coin-flip model and over 50 random sampled weak order
profiles for each 𝑝 .
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